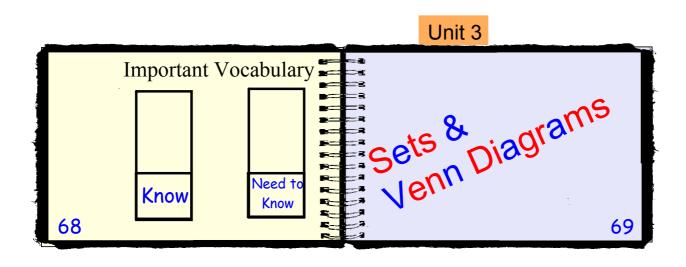

How can we compare two different sets?


Essential Question Essential Question Essential Question Essential Question Essential Question

Warm-up Warm-u

Warm-up: If the average speeding ticket costs \$275 with a standard deviation of \$30, then:

- a) what percentage of tickets cost \$200 or less?
- b) what percentage of tickets cost between \$250 and \$300?
- c) how expensive is your ticket of it costs more than 60% of all tickets?

Intersection of Sets

Standard 3.2

- <u>Set</u>- A set is a collection of numbers or objects We organize sets using { }
- i.e.- The set of odd numbers $O = \{1, 3, 5, 7, 9, 11, ...\}$ The set of all vowels $V = \{a, e, i, o, u\}$

Element- An individual number/object of a set

b ∉ <u>V</u>

Intersection of Sets- The elements that sets have IN COMMO Represented by

Example 1- Find the intersection of set A and set B $A = \{1, 5, 6, 6, 8, 11, 15\}$

$$A = \{1, 3, 6, 6, 8, 11, 15\}$$

 $B = \{2, 2, 2, 5, 8, 12, 13\}$

$$A \cap B = \{5, 9\}$$

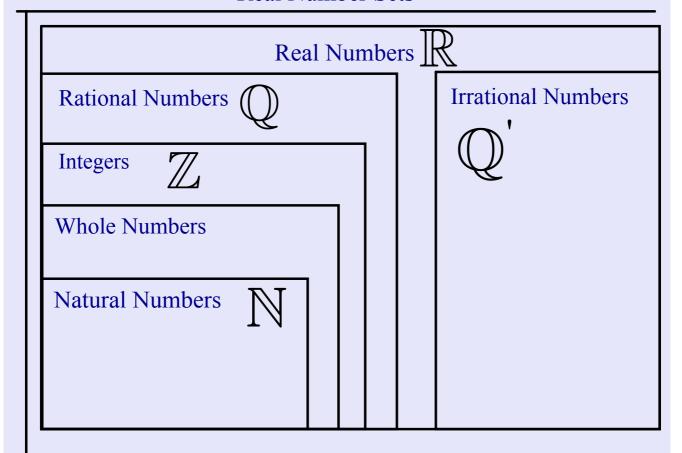
Example 2- Find the intersection of set C and set D

$$C = \{ 1, 3, 5, 7, 9, 11, 13 \}$$

 $D = \{ 2, 4, 6, 8, 10, 12, 14 \}$

$$C \cap D = \emptyset$$

When there is nothing in common for the intersection, then the intersection is <u>THE EMPTY SET</u>, represented by


Finite set - A set which <u>has</u> a finite number of elements.

Infinite set - A set which has infinitely many elements.

Real Number Sets

Are these sets finite or infinite?

Summary:

Match the Intersections

$$A = \{..., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...\}$$

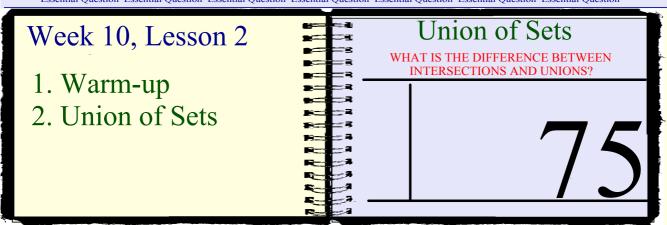
$$B = \{0, 1, 2, 3, 4, 5, ...\}$$

$$C = \{1, 2, 3, 4, 5, ...\}$$

$$)A \cap B$$

$$\geq$$
) $B \cap C$

$$\nearrow$$
 $A \cap \mathbb{N}$


(1)
$$A | B$$
 (1) $A | B$ (2) $B \cap C$ (3) $A \cap \mathbb{N}$ (2) $A \cap \mathbb{N}$ (3) $A \cap \mathbb{N}$ (4) $A \cap \mathbb{Z}$ (5) $A \cap \mathbb{Z}$

$$(4)_A \cap \mathbb{Z}$$

$$D)$$
 \mathbb{Z}

WHAT IS THE DIFFERENCE BETWEENINTERSECTIONS AND UNIONS?

Essential Question Essential Que

Warm-up Warm-u

Warm-up: Find the intersection of sets A and B

$$A = \{1, 2, 3, 5, 11, 15, 18, 21, 25\}$$
 $B = \{2, 3, 4, 6, 10, 11, 13, 17, 21\}$
 $A \cap B = \{2, 3, 11, 21\}$

Union of Sets

Standard 3.1

<u>Union of Sets</u> - The union of sets *A* and *B* contains elements in set *A*, set *B*, or both Represented by

Example 1- Find the union of set A and set B $A = \{ 1, 5, 6, 8, 11, 15 \}$ $B = \{ 2, 5, 8, 12, 13 \}$

$$A \cup B = \{1,2,5,6,8,11,12,13,15\}$$

Example 2- Find the union of set C and set D

$$C = \{1, 3, 5, 7, 9, 11, 13, ...\}$$
 $D = \{2, 4, 6, 8, 10, 12, 14, ...\}$
 $C \cup D = \mathbb{N}$

Example 3- Find the union of sets E, F, and G $E = \{..., -5, -4, -3, -2, -1, 0\}$ $F = \{0, 1, 3, 5, 7, 9, ...\}$ $G = \{2, 4, 6, 8, 10, ...\}$ $E \bigcup F \bigcup G = \mathbb{Z}$

Nasty Problems

When there is a mix of unions AND intersections, then do parenthesis first

i.e.- If given $(A \cap B) \cup C$ then you would first find the intersection of A and B, then find the union of that with set C

For examples 4, 5, 6, and 7, use the following sets

$$A = \{1, 2, 3, 4, 5, 6, 7\}$$

$$\Rightarrow$$
 {1,4,9,16, 25, 36,49}

 $C = \{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47\}$

Example 4

$$A \cup (B \cap C)$$

$$\frac{A \cup (B \cap C)}{0 \otimes C} \otimes A \cup O = \angle A \angle A$$

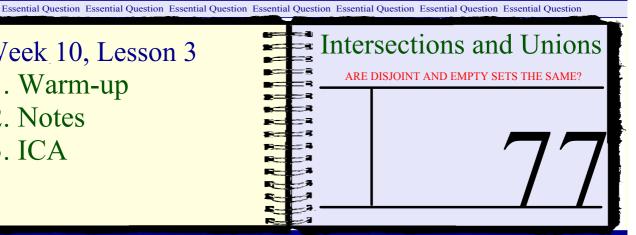
Example 5

$$B \bigcup (A \cap C)$$

{1,2,3,4,5,7,11,13,17,19,23,29,31,37,41,43,47}

Example 7

$$B \cap C$$



Disjoint- When the intersection of two sets is the empty set, we say the two sets are *disjoint*

ARE DISJOINT AND EMPTY SETS THE SAME?

Week 10, Lesson 3

- 1. Warm-up
- 2. Notes
- 3. ICA

Warm-up: Define the following symbols.

 \mathbb{N}

not an

Natural

Empty Irrational

element

element Numbers

Numbers

Intersection

Union

Rational

Real

Numbers

Integers

Numbers

Jet's Review!!!Identify the following as $\mathbb{R}, \mathbb{Z}, \mathbb{Q}, or \mathbb{N}$.

(Some may have more than one.)

- 0.47, ℚ ℝ
 .363636 , ℚ ℝ
- 3. -4, \mathbb{Z} , \mathbb{Q} , \mathbb{R} ,4. $\sqrt{9}$, \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R}
- 5. 234 N, Z, Q R.6. 3.141593.... R

is the most famous irrational number,

True or False?

-136 is a natural number

$$\frac{15}{2}$$
 is a rational number $\frac{14}{2}$ is not an integer

ass Activity ICA: In Class Activity ICA: In C

(a)
$$A = \{2, 4, 6, 8, 10\}$$

$$B = \{2, 3, 4, 5, 6\}$$

$$A \cup B =$$

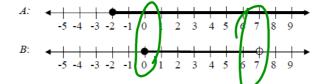
$$A \cap B =$$

(b)
$$A = \{..., -3, -2, -1, 0.1, 2, 3, ...\}$$
 $B = \{..., -5, -3, -1, 1, 3, 5, ...\}$

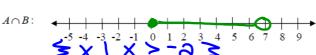
$$B = \{...-5, -3, -1, 1, 3, 5, ...\}$$

$$A \cup B =$$

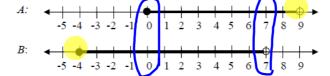
$$A \cap B =$$

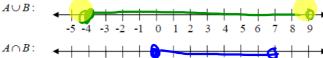

(c)
$$A = \{apples, bananas, oranges, grapefruit, peaches\}$$
 $B = \{lemons, peaches, apples\}$

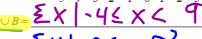
$$B = \{lemons, peaches, apples\}$$


$$A \cup B =$$

$$A \cap B =$$


Exercise #2: For each of the following, the graphs of two sets, A and B, are shown below. In each case, graph $A \cup B$ and $A \cap B$. Then write each using set-builder notation.


 $A \cup B$:



(b)

 $A \cup B$:

$$A \cap B = \{X \mid 0 \leq X < 7\}$$

$$A \cup \emptyset =$$

$$A \cap \emptyset =$$

$$(1)(-2,7)$$

$$(2) [-2, 5]$$

$$(4)(-2,5]$$

HERE "OPPOSITES" OF SETS?

Week 10, Lesson 4

- 1. Warm-up
- 2. Notes
- 3. ICA
- 4. Homework

ARE THERE "OPPOSITES" OF SETS?

Warm-up: Consider the following sets

$$A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

$$B = \{ x \mid x \text{ is all even numbers less than } 11, x \in \mathbb{N} \}$$

$$C = \{ x \mid x \text{ is a multiple of 4}, x < 21, x \in \mathbb{N} \}$$

Find
$$(A \cap B) \cup C$$

and
$$A \cap (B \cup C)$$

Universal & Compliment Sets

The Universal Set- The set that contains all elements for a given problem

> The set where any other set is a subset Represented by U

Subsets \subset

A is a subset of B if and only if every element of A is in B

$$\{a\} \subseteq \{f, r, a, u\}
 \{1,2,3\} \subseteq \{-1, 0, 1,2,3\}
 \{4, 5, 7, 10\} \subseteq \{4, 5, 7, 10\}$$

Proper Subsets \subset

A is a proper subset of B if and only if every element of A is in B, and A is not equal to B.

{a}
$$\subset$$
 {f, r, a, u}
{1,2,3} \subset {-1, 0, 1,2,3}
{4, 5, 7, 10} $\not\subset$ {4, 5, 7, 10}

Determine if the following sets are a subset or proper set

$$U = \{1, 2, 4, 4, 6, 7, 8, 9, 10\}$$
 $A = \{1, 3, 5, 7, 9\}$ Proper Subset B U
 $C = \{1, 5, 9, 15\}$

Example 1- Consider the universal set U

$$U = \{2,5,8,11,15,18,20,21,25,28,30\}$$

True or false, the following sets are subsets of the universal

$$A = \{2,8,11,15\}$$
 $TRUE, A \subset U$
 $B = \{1,2,3,4,5,6\}$
 $FALSE, B \subset U$
 $C = \{15,18,21,28\}$
 $TRUE, C \subset U$
 $D = \{30\}$
 $TRUE, D \subset U$
 $E = \{\emptyset\}$
 $TRUE, \emptyset$ is a subset of all sets

Example 2-

$$U_1 = \mathbb{N}$$
 $U_2 = \mathbb{Z}$ $U_3 = \mathbb{Q}$

For each of the following subsets, determine which universa sets the subsets are contained in

sets the subsets are contained in
$$A = \{1, 2, 3, 4, 5\}$$

$$B = \{-14, -11, 12, \underline{527}, 13, \underline{5}\}$$

$$C = \left\{\frac{5}{2}, 12, 5, 15, 20, 25, \frac{100}{3}\right\}$$

$$D = \{-5, -1, 0, 4, 15\}$$

Universal & Compliment Sets

Compliment of a Set- The elements not contained in a given set, but are contained in the Universal Set.

- The "leftover" elements

Example 3- Given the universal set U and subsets A, B, and C, find the following compliments:

$$U = \{x \mid 0 \le x \le 20, \text{ where x is a whole number}\}\$$

$$A = \{2,4,6,8,10,12,14,16,18,20\}$$

$$B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

$$C = \{3, 5, 7, 9, 11, 13, 15, 17, 19\}$$

$$A \cup B =$$
 $[1,2,3,4,5,6,7,8,9,10,12,14,16,18,20]$

$$A' \cap B = \frac{1}{3}, \frac{3}{5}, \frac{5}{7}, \frac{9}{3}$$

$$A' \cup B' = \{0,1,3,5,7,9,11,2,13,14,15,16,17,18,19,20\}$$

$$(A \cap B)' = \{0, 1, 3, 5, 7, 9, 11, 13, 14, 15, 16, 17, 18, 19, 20\}$$

U11L4UnionandIntersection.pdf