What is the difference between an arithmetic and a geometric sequence

Week 13, Lesson 1

1. Warm Up

2. Sequences and Series

3. ICA

4. STUDY!

Warm-up War

Series

Sequences

Arithmetic:

Geometric:

Example 1: Find the 9^t term of the sequence below, and then find the sum of the sequence of the 9 terms

$$U_{h} = U_{1} + (n-1)M$$

$$U_{h} = \frac{1}{2}(v_{1} + v_{n})$$

Example 2: Find the 35th term of the sequence below, then find the sum of the sequence of the 35 terms

$$u_{n} = U_{1}r^{n-1}$$
 32768, 16384, 8192, ... u_{35}

Example 3: First, assume the sequence is arithmetic. Find the 10^{th} term. Then, pretend the sequence is geometric. Find the 10^{th} term.

$$2, 4, \dots, u_{10}$$

Order Correctly

Given the 6 problems below, order the answers from least to greatest

1.
$$U_{10}$$
 of $\frac{1}{3}$, 1, 3, ..., u_{10} 2. S_{10} of 2, 5, 8, ..., u_{10}

3.
$$U_5$$
 of 3, 9, ..., u_5 4. S_5 of 64, 32, 16, ..., u_5

5.
$$U_{25}$$
 of 2, 4, 6, ..., u_{25} 6. S_{50} of 64, 32, 16, ..., u_{50}

ss Activity 1CA: In Class Activity 1CA: In Cl

How can money be worth the same amount, but have different values

Essential Question Essential Question Essential Question Essential Question Essential Question Essential Question

Week 13, Lesson 2

- 1. Warm-up
- 2. Currency Conversion:
- 3. ICA
- 4. STUDY!

Currency Conversion

How can money be worth the same amount but have different values?

89

Warm-up Warm-u

Warm-up:

1) Robert can either be paid \$50 to start and earn a \$15 raise each day, or he can be paid \$800 to start and have his daily pay cut in eighths. If he plans on working for

→ 10 days, which plan is best?

$$S_{N} = \frac{n}{2} \left(v_{1} + \underline{v_{N}} \right)$$

$$S_{11} = \frac{10}{3} \left(50 + 185 \right) = \frac{11}{175}$$

$$\frac{U_{n}}{U_{10}} = \frac{U_{1} + (n-1)}{U_{10}}$$

$$\frac{U_{10}}{U_{10}} = \frac{18}{18}$$

$$S_{10} = \frac{O_{1}(C_{110} - 1)}{\left(\frac{1}{8} - 1\right)}$$

Currency Conversion

Converting Units:

-Identify the starting amount

-Set up the giant fraction bar

-You can only cancel out a unit when it is on top AND bottom of the fraction bar

100•13

-Multiply across the top

-Multiply across the bottom

100 dollars = 1,300 pesos -Simplify the answer

Example 1: Mr. Henderson takes his life savings to Europe, all 75 dollars (USD). In London, 100 USD is worth 60 pounds (BPS). Then he is traveling to Sweden. 1 BPS is worth 10.9 Swedisl Krona (SKE), How much is Mr. Henderson's \$75 worth in Swedish Krona?

$$\frac{75 \cdot 60 \cdot 10.9}{100 \cdot 1} = 490.5 \text{ SKE}$$

Example 2: While traveling to Europe, Greg had 1,500 dollars (USD). In Spain, they only accept euros (EUR). 100
USD converts to 72 EUR, Greg spent 42 euros in Spain before leaving for London. In London, they only accept pounds (GBP). 100 EUR converts to 83
GBP. He spent 100 pounds in London. How much money did he have in USD after the trip?

Greg has \$ (USD) left after his trip.

Summary:

ICA:

Week 13 Leson 2 ICA Homework.docx

ICA: In Class Activity ICA: In Class Activity

Country	Money	\$1 US in Foreign Currency	Foreign Currency in \$1 US
Britain	Pound	0.49	2.04
France	Euro	0.73	1.38
Mexico	Pesos	10.78	0.09
China	Yuan	7.57	0.13
Japan	Yen	121.82	0.008

1) 5 dollars = 245 pounds 6) 5000 yen = ______dollars

2) 10 dollars = ____euros

7) 650 Yuan = _____dollars

3) 50 dollars = _______dollars

4) 150 dollars = _____Yuan

9) 700 pounds = _____dollars

5) 1000 dollars = ______yens

10) 500 pesos = _____dollars

The Port of Long Beach charges ships for the time they are at the dock being loaded and unloaded. The length of the vessel determines the daily charge. A ship that is 200 meters long must pay \$2,882.00 per day.

11) If the ship is from China, how many Yuan would the company pay for each day?

12) If the ship was from France, how many euros would the company pay for each day?

ICA: In Class Activity ICA: In Class Activity

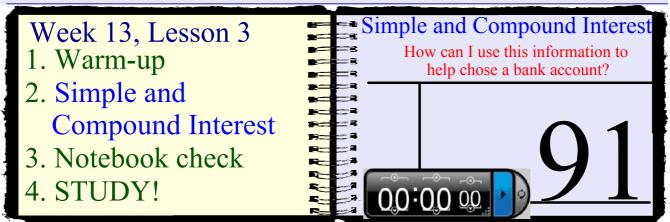
Answers:

Country	Money		Foreign Currency
		Foreign Currency	in \$1 US
Britain	Pound	0.49	2.04
France	Euro	0.73	1.38
Mexico	Pesos	10.78	0.09
China	Yuan	7.57	0.13
Japan	Yen	121.82	0.008

1) 5 dollars =
$$2.45$$
 pounds 6) 5000 yen = 40 dollars 2) 10 dollars = 7.30 euros 7) 650 Yuan = 84.50 dollars 3) 50 dollars = 539 pesos 8) 850 euros = $1,173$ dollars 4) 150 dollars = $1,135.5$ Yuan 9) 700 pounds = $1,428$ dollars 5) 1000 dollars = $121,820$ yens 10) 500 pesos = 45 dollars

The Port of Long Beach charges ships for the time they are at the dock being loaded and unloaded. The length of the vessel determines the daily charge. A ship that is 200 meters long must pay \$2,882.00 per day.

11) If the ship is from China, how many Yuan would the company pay for each day?


21,816.74 Yuan

12) If the ship was from France, how many euros would the company pay for each day?

2,103.86 euros

How can I use this information to help chose a bank account?

Essential Question Essential Question Essential Question Essential Question Essential Question Essential Question Essential Question

Warm-up Warm-u

Warm-up: From your IB reference sheet, find the formula for Simple and Compound Interest

Simple Interest

Compound Interest

Interest

<u>Principle:</u> -The original balance

<u>r:</u> -The annual interest RATE being applied

<u>k:</u> -The number of compound periods <u>per year</u>

<u>n:</u> -The number of years

-You may also use t for time

Simple Interest: -Interest is applied only on the principle

balance at the end of the year

-This gives the amount of INTEREST, not

the balance of the account

$$I = P \cdot \left(\frac{r}{100}\right) \cdot t$$

<u>Compound Interest:</u> -Interest is applied multiple times per year

-Interest builds on itself

$$A = P \cdot \left(1 + \frac{r}{100 \cdot k}\right)^{k \cdot n}$$

Practice Problems

Example 1- Robert owes \$10,000 in student loans, but he doesn't have to start paying it off yet. His APR is 9% and is compounded daily. What will the balance be for his student loans after 1 year? 3 years? 5 years?

FV= PV x
$$\left(1 + \frac{r}{100k}\right)^{\frac{kn}{2}}$$
 PV = 10000
FV = 10000 x $\left(1 + \frac{9}{100(365)}\right)^{\frac{365}{10}}$ $N = 1$

10000 x $\left(1 + (9 \div 100 \times 365)\right)^{\frac{365}{10}}$ $\left(365 \times 1\right)$

Example 2- Every year, Gabby's bank gives her 4% of her initial deposit as an interest payment. She deposited \$2,000 10 years ago. How much money did she profit in interest? How much money is in her account now?

$$I = P \cdot \left(\frac{r}{100}\right) \cdot t$$

$$r = 4$$

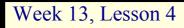
$$+ = 10$$

$$2000 \cdot \left(\frac{4}{100}\right) \cdot 10 = 800$$

Gabby now has \$2,800 in her account.

Savings Accounts

You have to choose between 2 different savings accounts at Wells Fargo. You are depositing \$10,000


Option A offers .03% APR compounded daily

Option B offers .05% simple interest

Which option will earn you more money after 15 years? What is the difference?

Am I ready for my quiz? How did I prepare for this quiz?

Essential Onestion Essential Question Essential Que

- 1. Warm-up
- 2. Quiz Review
- 3. QUIZ

. Warm-up Warm-up

Warm-up:

- 1) Kaitlin can either be paid \$80 to start and earn a \$20 raise each day, or she can be paid \$400 to start and have her daily pay cut in *half*. If she plans on working for 5 days, which plan is best?
- 2. What has a greater value, the 75th term of sequence a, or the sum of the first 15 terms of sequence b?

$$a = 5, 8, 11, \dots a_{75}$$
 $b = 100, 50, 25, \dots b_{15}$

- 3. 100 British Pounds (BPS) converts to 120 Euros (EUR). 1000 EUR converts to 1473 Australian Dollars (AUD). If I have 250 BPS, how much is that worth in AUD?
- 4. While traveling to Europe, Cynthia had 280 dollars (USD). In Spain, they only accept euros (EUR). 100 USD converts to 72 EUR. Cynthia spent 35 euros in Spain before leaving for London. In London, they only accept pounds (GBP). 100 EUR converts to 83 GBP. She spent 70 pounds in London. How much money did she have in USD after the trip?
- 5. Carlos took out \$10,500 in student loans before starting college. His interest rate is 3.5%, compounded daily. He doesn't need to start making payments until he graduates 4 years after taking out the loans. What is the balance of his student loans when he needs to begin paying off the balance?

Finance QUIZ TIME!!

You need:

Your Calculator

A Pencil or a blue pen or a black pen

High lighters if you would like them

IB Reference Sheet

Week13 QUIZ.docx

Arithmetic SUM.pdf

Arithmetic.pdf

geometric.pdf

geometric sum.pdf

Week13 QUIZ.docx

Week 13 Leson 2 ICA Homework.docx