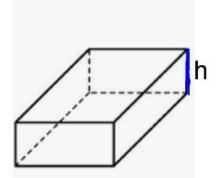
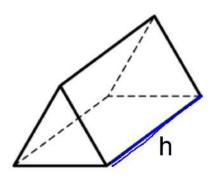

Prism - A solid geometric figure whose two end faces are similar, equal, and parallel retilinear figures, and whose sides are parallelograms.

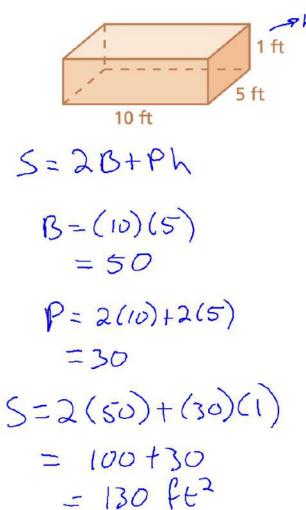
Bases - Congruent parallel polygons

Lateral Faces - Parallelograms that make up the sides

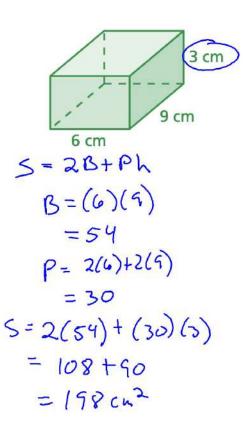

Surface Area of a Right Prism

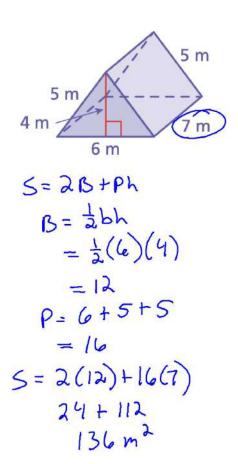

S = 2B + Ph

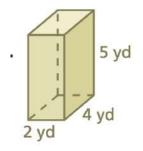
B = Area of the base

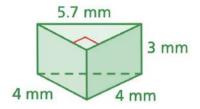

P = Perimeter of the base

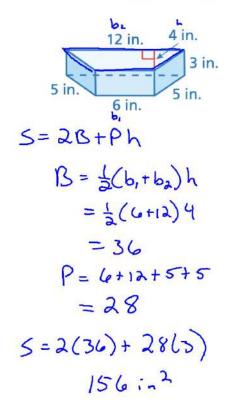
h = height of the prism

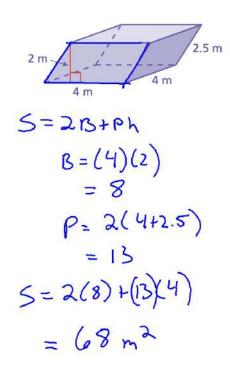


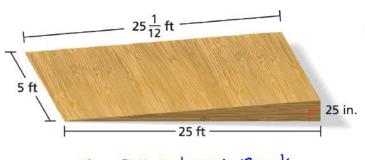

Find the surface area for each prism.


2ft 2.2ft 2.2ft 2.2ft 3ft 3ft 3ft
$$S = 2B + Ph$$
 $S = \frac{1}{2}bh$ $S = \frac{1}{2}(1)(2)$ $S = \frac{1}{2}(1)(2)$ $S = \frac{1}{2}(1)+(5.2)(3)$ $S = \frac{1}{2}(1)+(5.2)(3)$


Find the surface area for each prism




Find the surface area for each prism



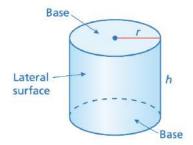
Find the surface area for each prism

$$S = 2B + top + Back$$

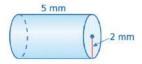
$$B = \frac{1}{2}bh$$

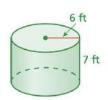
$$= \frac{1}{2}(25)(2.08)$$

$$= 26$$


21. RAMP A quart of stain covers
100 square feet. How many quarts
should you buy to stain the wheelchair
ramp? (Assume you do not have to
stain the bottom of the ramp.)

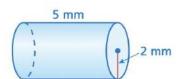
Surface area of a Cylinder -


$$S = 2B + Ph$$


Since the base is always a circle

$$S = 2\pi r^2 + 2\pi rh$$

Find the surface area for each cylinder.



$$S=2\pi r^{2}+2\pi rh$$

$$=2\pi (6)^{2}+2\pi (6)(7)$$

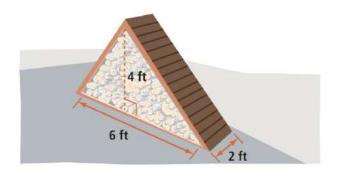

$$72\pi + 84\pi$$

$$156\pi Pt^{2}$$

The volume of a prism is the product of the area of the base and the height of the prism.

The volume of a cylinder is the product of the area of the base and the height of the cylinder.

$$V = Bh$$


$$V = \pi r^2 h$$

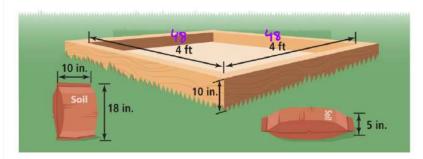
A. Lonzell needs to store 20 ft³ of firewood. Could he use the storage rack shown?

SOLUTION

$$V = BH$$
 $B = \frac{1}{2}bh$
 $= \frac{1}{2}(a)(4)$
 $= 1a$
 $V = (1a)(2)$
 $= 24 ft^3$

Yes, he could use the Storage Ruck

B. Keisha is deciding between the two canisters shown. Which canister holds more? What is the volume of the larger canister?



$$V = \pi r^{2}H$$

$$= \pi (10)^{2}(25)$$

$$= 2500\pi \text{ cm}^{2}$$

Marta is repurposing a sandbox as a garden and is buying the soil from her school's fundraiser. Estimate the number of bags she should buy.

3. Kathryn is using cans of juice to fill a cylindrical pitcher that is 11 in. tall and has a radius of 4 in. Each can of juice is 6 in. tall with a radius of 2 in. How many cans of juice will Kathryn need?

$$V_{\text{pitcher}} = \pi r^{2} H$$

$$= \pi (4)^{2} (11)$$

$$= 176 \pi \text{ in}^{3}$$

$$= 7.3$$

$$\frac{176 \pi}{24 \pi} = 7.3$$

$$\approx 7 \text{ cans}$$

Benito has 15 neon tetras in his aquarium. Each neon tetra requires at least 2 gallons of water. What is the maximum number of neon tetras that Benito should have in his aquarium? (Hint: 1 gal = 231 in.^3)

$$V = \pi r^{2} H$$

$$\pi(8)^{2}(32)$$

$$= 2048\pi in^{3}$$

$$\approx \frac{6433.98 in^{3}}{231} = \frac{28gal}{2} = 14 \text{ neon tetras}$$

4. Benito has 15 neon tetras in his aquarium. Each neon tetra requires at least 2 gallons of water. He is considering the aquarium shown. What is the maximum number of neon tetras that this aquarium can hold?

Enter your answer.

$$V = (24)(12)(16) = \frac{4608}{231} = \frac{20}{2}$$
$$= 10$$