

Mathematics Curriculum Guide

Plane Geometry ~ Senior Campus 2017-18

Paramount Unified School District

Educational Services

Topic 7: Two-Dimensional Area & Three-Dimensional Volume

			Transfe	er Goals					
2) Effec	tively communicat	e orally, in writing, and	a never-before-seen problem, devel using models (e.g., concrete, represe asoning of others using precise math	ntational, abstract) for a give					
 How a 	do perimeters and a do you apply densit can ratios be used to can you determine to do you find the volu	areas of similar polygons y based on area in mode o compare the perimete the intersection of a soli	eling situations? ers and areas of similar figures?	a pyramid, a cone, and a sp	bhere?	Standards: G-GPE-7, G-W G-GMD 3, G-GMD 4, G-G Suggested Timeframe: 4 Start Date: March 26, 20 Assessment Dates: April	MD-5 weeks/20 days 18		
Time	Lesson/ Activity	Focus Questions for Lessons	Understandings	Knowledge		Skills	Resources		
1 day	Opening Activity: See pages 614-615 #1-14 Concept Byte: Transforming to Find Area								
1 day	Lesson 1-8: Perimeter, Circumference, and Area (pp. 59-67) SMP: 1,3,4,7 G-GPE 7	 Focus Question: Explain two different ways we can measure geometric figures and what information you need about the figure to find those measures. Inquiry Question: p. 59 Solve It! 	 The perimeter of a polygon is the sum of the lengths of its sides. The area of a polygon is the number of square units it encloses. Formulas can be used to find the perimeter (or circumference) and area. Distance / length is measured in units while area is measured in square units. Area of an irregular shape can be found by adding the areas of non-overlapping regular shapes contained within it. 	 Vocab: perimeter, circumference, area, π Concepts: Perimeter and Area formulas for rectangles and triangles Circumference and Area formulas for circles Distance Formula 	area (incl coo requ Dete and prol plar form Calc shap sma add • Use	ermine the perimeter and a of rectangles and triangles luding problems on the rdinate plane that may uire distance formula). ermine the circumference area of circles (including blems on the coordinate he that may require distance nula). culate area of an irregular pe by breaking it into iller, regular shapes and ing those areas together. appropriate units with ulations.	Common Core Problems: #4,5,6, 34-37, 38, 39, 40, 41, 42, 44-46, 47, 48, 53, 55, 56, 60, 61 Thinking Maps: Tree Map divided into two branches for perimeter and area. Leave extra room on the area side to add formulas throughout the topic.		

Time	Lesson/ Activity	Focus Questions for Lessons	Understandings	Knowledge	Skills	Additional Resources
2 Days	Lesson 10-1: Areas of Parallelograms and Triangles SMP: 3,4,5,6 (pp. 616-622) G-GPE 7	 Focus Question: What dimensions of a triangle or parallelogram are needed to calculate its area? Inquiry Question: p. 616 Solve It! 	 The area of a parallelogram or a triangle can be found when the length of its base and its height are known. The area of a triangle is found using the formula A = bh/2. The area of a parallelogram is found using the formula A = bh. The area of an equilateral triangle can be derived from 30-60-90 triangle or A = s² √3/4. 	 Vocab: height, base, area, perimeter, altitude, hypotenuse Concepts: Pythagorean Theorem Special Right Triangles Distance Formula Formula for the area of a triangle and parallelogram 	 Use Pythagorean Theorem, Distance Formula or Special Right Triangles to find the height or base of a triangle or parallelogram. Calculate the area of a triangle. Calculate the area of an equilateral triangle given the formula (*Not in this section but necessary for Volume in Topic 7) Calculate the area of a parallelogram. 	Common Core Problems: #5,6,22, 23, 31, 36 Thinking Maps: Add to the Tree Map created in the first lesson of this topic.
3 Days	Lesson 10-2: Areas of Trapezoids, Rhombuses, and Kites SMP: 1,3,4,6 (pp. 623-628) G-GPE 7	 Focus Question: What dimensions of a trapezoid, rhombus or kite are needed to calculate its area? Inquiry Question: p. 623 Solve It! 	 The height of a trapezoid is the perpendicular distance between the bases The area of a trapezoid is found using the formula: A = ¹/₂ h(b₁ + b₂) The area of a kite is found using the formula: A = ^{d₁d₂}/₂ The area of a rhombus is found using the formula: A = ^{d₁d₂}/₂ 	 Vocab: base, height, diagonal, altitude, trapezoid Concepts: Pythagorean Theorem Special Right Triangles Distance Formula Formula for the area of a trapezoid, kite, and rhombus 	 Identify the necessary dimensions for finding the area of a kite, trapezoid or rhombus. Use Pythagorean theorem, distance formula or special right triangles to find: 1) the height or bases of a trapezoid, and 2) the diagonals of a kite or rhombus. Calculate the area of a kite, trapezoid or rhombus. 	Common Core Problems: #7-10, 26, 28, 40, 41 Thinking Maps: Add to the Tree Map created in the first lesson of this topic.
1 Day	Lesson 10-4: Perimeters and Areas of Similar Figures SMP: 1,3,4,5,7,8 (pp. 635-641) G-GPE 7, G-GMD 5	 Focus Question: If the scale factor between two similar figures is a/b then what is the ratio of their perimeters? What is the ratio of their areas? Inquiry Question: p. 635 Solve It! 	 Ratios can be used to compare the perimeters and areas of similar figures. If the scale factor between two similar figures is a/b, then the ratio of the perimeters is a/b and the ratio of the areas is a²/b². 	 Vocab: ratio, area, proportion, perimeter, similar, scale factor Concepts: Formula for the area of a regular polygon and an equilateral triangle 	 Use a scale factor to find ratio of areas or ratio of perimeters. Find the perimeters and areas of similar polygons. 	Common Core Problems: #5, 6, 7, 8, 31, 32, 41, 46, 47 STEM: #40, 47 Thinking Maps: Add to the Tree Map created in the first lesson of this topic.

Time	Lesson/ Activity	Focus Questions for Lessons	s for Understandings Knowledge Skills								
1 Day				ormance Task: ee pages attached to this docume	ent)						
1 Day	Review Lessons 1.8, 10.1, 10.2, 10.4 Concepts and Skills Teachers may want to focus on complex figures such as the one used on Pg. 620 #24 – 30, and polygons on the coordinate plane if that hasn't been interwoven throughout lessons already for population/crop density (sample lesson below)										
1 Day	Review Topic 6 Test										
1 Day	Opening Activity: How Much Money is That? <u>http://robertkaplinsky.com/work/drug-money/</u>										
1 Day	Lesson 11-1: Space Figures and Cross Sections SMP: 1,2,3,4,5,7 (pp. 688-695) G-GMD 4	 Focus Question: How are the number of faces, F, vertices, V, and edges, E, of a polyhedron related to each other? What is a cross section? Inquiry Question: p. 688 Solve It! 	 A three-dimensional figure can be analyzed by describing the relationships among its vertices, edges, and faces. A cross section is the intersection of a three-dimensional figure and a plane. 	 Vocab: polyhedron, face, edge, vertex, cross section, net Concepts: Euler's Formula 	 Examine and describe cross sections of polyhedra and recognize their parts and cross sections. Apply Euler's Formula to verify two-dimensional nets of three- dimensional figures. 	Common Core Problems: #4, 5, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 40 Thinking Maps: A Circle Map to record learning in this lesson.					
1 Day	Lesson 11-4: Volumes of Prisms and Cylinders SMP: 1,3,4,6,7 (pp. 717-724) G-GMD 1, G-GMD 3	 Focus Question: What does volume measure? How do you find the volume of a prism or cylinder? How are the formulas similar? How are they different? Inquiry Question: p. 717 Solve It! 	 The volume of a prism is found using the formula: V = Bh; B = base area The volume of a cylinder is found using the formula: V = Bh; B = base area or V = πr²h 	 Vocab: volume, base area, height, cubic units Concepts: Area of a circle Area of a triangle Area of a rectangle Area of a parallelogram Radius of a circle is half the diameter Slant height vs altitude Volume of a Prism and Cylinder 	 Find the volume of a prism using the formula: <i>V</i> = <i>Bh</i>; <i>B</i> = <i>base area</i> Find the volume of a cylinder using the formula: <i>V</i> = πr²h 	Common Core Problems: #21, 22, 26, 28, 29, 30, 35, 45 STEM: #28, 44 Thinking Maps: Begin a Tree Map to identify the volume formulas for this chapter.					

Time	Lesson/ Activity	Focus Questions for Lessons	Understandings	Knowledge	Skills	Additional Resources				
1 Day	Lesson 11-5: Volumes of Pyramids and Cones SMP: 1,3,4,7 (pp. 726-732) G-GMD 3	 Focus Question: How do you find the volume of a pyramid or cone? How do the volumes of right solids compare to the volume of oblique solids with the same dimensions? Inquiry Question: p. 726 Solve It! 	 The volume of a pyramid is found using the formula: V = ¹/₃Bh; B = base area The volume of a cone is found using the formula: V = ¹/₃Bh; B = base area or V = ¹/₃πr²h 	 Vocab: volume, slant height, altitude, base area, radius, diameter, cubic units Concepts: Area of a circle Radius of a circle is half the diameter. Area of a rectangle Area of triangle Special Right Triangles Slant height vs altitude Volume of a Pyramid and Cone 	 Find the volume of a pyramid using the formula: V = ¹/₃Bh; B = base area Find the volume of a cone using the formula: V = ¹/₃πr²h 	Common Core Problems: #5, 15, 16, 21, 27, 29 STEM: #15, 16, 27, 28 Thinking Maps: Add to the Tree Map started in lesson 11-4.				
1 Day	Lesson 11-6: Surface Areas and Volumes of Spheres SMP: 1,3,4,6,7,8 (pp. 733-740) G-GMD 1	 Focus Question: How do you find the surface area of a sphere? How do you find the volume of a sphere? Inquiry Question: p. 733 Solve It! 	 The surface area of a sphere is found using the formula: S. A. = 4πr² The volume of a sphere is found using the formula: V = ⁴/₃πr³ 	 Vocab: sphere, radius, diameter Concepts: Radius of a circle is half the diameter Surface Area Formula for a Sphere Volume Formula for a Sphere 	• Find the volume of a sphere using the formula: $V = \frac{4}{3}\pi r^{3}$	Common Core Problems: #30, 32,43,46,47,48,52 STEM: #31, 52, 53 Thinking Maps: Add to the Tree Map started in lesson 11-4.				
2 days	Review Topic 7 Concepts and Skills									
2 days	Topic 7 Assessment									

Common Core Practices

- $\hfill\square$ Instruction in the Standards for Mathematical Practices
- Use of Manipulatives

- □ Use of Talk Moves
- Note-taking

Use of Technology
 Use of Real-world Scenarios

- Project-based Learning
- □ Thinking Maps

UnCommon Core Mission Statement

We're real public school teachers, creating lessons that reinforce Common Core standards and honor the unique perspectives of your students.

Lesson Description

An estimated 300,000 marchers listened to Martin Luther King, Jr.'s "I Have a Dream" speech on August 28, 1963. But just how densely packed was the National Mall that day?

In this assignment, students use a scaled drawing of the National Mall to determine its actual area. They must measure the sides (and radii) of various shapes, calculate area, convert units, use scale factors, and interpret their findings.

High school geometry students should be able to do this assignment with little help from the teacher. The assignment is appropriate for middle school classes when taught using the scaffolding ideas presented in the lesson plan.

Along with the handout and lesson plan, a key is also provided.

I am very excited about Common Core's "Standards for Mathematical Practice," which aim to make our students competitive in college and the workplace. This particular assignment addresses many of those standards:

- 1. Make sense of problems and persevere in solving them.
- 4. Model with mathematics.
- 5. Use appropriate tools strategically.
- 6. Attend to precision.

Of course, Domain Standards are also addressed. They are listed with the lesson plan.

March for the Dream

Objective: Students use geometry to calculate the crowd density of people present at Dr. King's historic "I Have a Dream" speech. Students will demonstrate an understanding of measurement, area, scale factors, ratios, and unit conversion.

Target Age Group: High school geometry students should be able to do this assignment with little scaffolding from the teacher. The assignment is appropriate for middle school classes when taught using the suggested scaffolding ideas (see next page).

Materials needed: Copies of the March for the Dream handout; March for the Dream answer key; rulers

Standards	Lesson Plan
Grade 6 Geometry – Solve real-world and mathematical problems involving area, surface area, and volume	 Engage students by showing a <u>YouTube clip</u> of Dr. King's speech. Pause the video during a shot of the audience, and ask students to comment. You might ask your class the following
1. Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving	questions: How many people do you think there were that day? What were they marching for? Have you ever been in a crowd that big?
real-world and mathematical problems.	 Pass out March for the Dream. Advanced students should be able to complete the handout without additional information. It can be given as an in-class partner project, solo task, or
Grade 7	homework assignment. For lower grade (and skill) levels, use
Geometry 1. Solve problems involving scale drawings of geometric	the scaffolding ideas on the next page.
figures, including computing actual lengths and areas from a scale drawing	3. Grade the assignment using the attached key. Remember that answers are approximate, as we are dealing with millimeters. The final density answer should be between 5 and 5.3 feet ² .
6. Solve real-world and mathematical problems involving	
area, volume and surface area of two- and three- dimensional objects composed of triangles,	
	Page 7 of 14

quadrilaterals, polygons, cubes, and right prisms.

Common Core Standards, Geometry

Modeling with Geometry – Apply geometric concepts in modeling situations

1. Use geometric shapes, their measures, and their properties to describe objects

3. Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios)

Scaffolding Ideas

A. Write the necessary area formulas on the board:

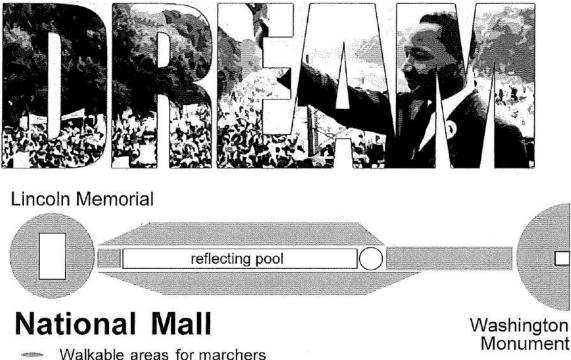
Circle: $A = \pi (radius)^2$ **Rectangle:** $A = length \cdot width$

Trapezoid: $A = \frac{1}{2} \cdot height \cdot (base_1 + base_2)$ or students can dissect the trapezoid into a rectangle and two triangles ($A = \frac{1}{2} \cdot base \cdot height$)

B. Provide the unit conversions for your students:

1,000 millimeter = 1 meter 1,000,000 millimeters² = 1 meter² 1 foot² = 10.7639 meters²

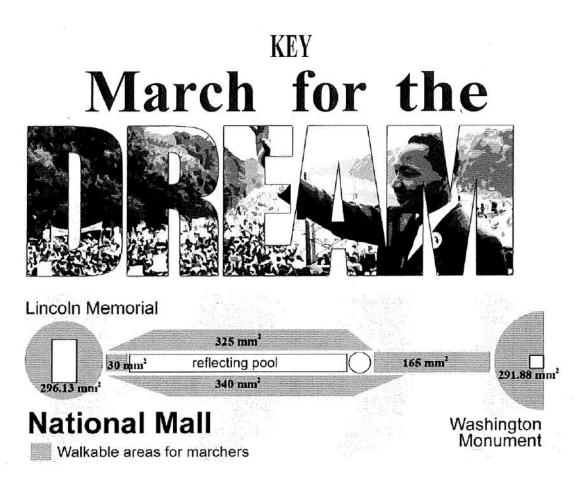
C. Younger students may only be able to find the area of the diagram. Complete the rest of the handout as a class.


D. Students may have a hard time understanding the difference between length ratios and area ratios.

Explain that you obtain Area in Diagram by squaring Length in Diagram Area in Real Life Length in Real Life

For this assignment they should do the following calculation:

$$\left(\frac{1 \text{ mm}}{10 \text{ m}}\right)^2 = \frac{1 \text{ mm}^2}{100 \text{ m}^2}$$


March for the

On August 28, 1963, Martin Luther King, Jr. delivered his famous "I Have a Dream" speech on the steps of the Lincoln Memorial. King was speaking to over 300,000 participants of the *March on Washington for Jobs and Freedom*. Look at the above map and determine how packed the crowds were that historic day.

"Cro	owd-counting professionals"	use the following rule of th	umb:
mosh pit	vel y dense	dense	light density
l person per 2.5 ft ²	I person per 4.5 ft ²	1 person per 7 ft ²	1 person per 10 ft ²

For point of reference, the reflecting pool is approximately 50 meters wide and 610 meters long.

On August 28, 1963, Martin Luther King, Jr. delivered his famous "I Have a Dream" speech on the steps of the Lincoln Memorial. King was speaking to over 300,000 participants of the *March on Washington for Jobs and Freedom*. Look at the above map and determine how packed the crowds were that historic day.

"Cro	owd-counting professionals"	use the following rule of th	numb:
mosh pit	very dense	dense	light density
l person per 2.5 ft?	1 person per 4.5 ft?	1 person per 7 ft?	1 person per 10 ft?

For point of reference, the reflecting pool is approximately 50 meters wide and 610 meters long.

Find the following two ratios (hint: they aren't the same)	Find the	following 1	two ratios	(hint: they	v aren't the sa	me)
--	----------	-------------	------------	-------------	-----------------	-----

Length in Diagram	_	5 mm	_	1 mm	æ	Area in Diagram		1 mm ²
Length in Real Life		50 m		10 m	02	Area in Real Life	-	100 m ²

Area of the shaded regions on the diagram (in millimeters): 1,448 mm²

Area of the walkable regions (in meters²): 144,800 m²

Area of the walkable regions (in feet²): 1,558,610 ft²

Average crowd density was 1 person for every $\frac{1,558,610 \text{ n}^2}{300,000} = 5.2 \text{ n}^2$

Where does this fall on the crowd density spectrum? Between very dense and dense.

POPULATION DENSITY

INQUIRY QUESTION ...

The city of Sierra Vista, AZ has a population of 45,129 and is 153.5 square miles in land area.

The city of Paramount, CA has a population of 54,908 and is 4.73 square miles in land area.

The city of Diamond Bar, CA has a population of 56,449 and is 14.8 square miles in land area.

Based on the information above, which city do you think would be most crowded? Least crowded? Why? Be prepared to explain your reasoning.

POPULATION DENSITY

Population density is a measure of population per unit area. It can be applied to crops (# of plants per acre), people living in a defined area (# of people per square mile), etc.

Use the information above in the "Inquiry Question" to find the population density for each city.

Paramount, CA	Diamond Bar, CA
я .	
	Paramount, CA

Compare the population densities found above with some other cities around the world ...

	Population	Land Area (mi ²)	Population Density
Dhaka, Bangladesh	15,414,000	134	
Buenos Aires, Argentina	13,639,000	1,020	
Mexico City, Mexico	19,463,000	790	
Manila, Philippines	21,951,000	550	

CROP DENSITY OF SUNFLOWERS

In a study conducted at the University of Minnesota, sunflowers were planted in different fields and studied to determine the best way farmers could produce as much sunflower seed as possible while using the fewest number of plants possible. (Link at bottom of note guide)

Mark has a field in the shape of a trapezoid with vertices S (0, 0), N (1480, 0), F (1480, 1285), and R (740, 1285) where each unit on the coordinate plane represents one foot. After reading the study done at the University of Minnesota, Mark determines that he needs to plant 15,000 sunflower plants per acre to have the maximum yield.

1) What is the area of Mike's field to the nearest hundredth of an acre? (HINT: 1 acre equals 43,560 ft²)

2) Approximately how many sunflower plants should Mark plant on his field to have the maximum yield?

http://www.extension.umn.edu/garden/yard-garden/flowers/sunflower-plant-population-and-its-arrangement/

POPULATION DENSITY

INQUIRY QUESTION ...

The city of Sierra Vista, AZ has a population of 45,129 and is 153.5 square miles in land area. The city of Paramount, CA has a population of 54,908 and is 4.73 square miles in land area. The city of Diamond Bar, CA has a population of 56,449 and is 14.8 square miles in land area. Based on the information above, which city do you think would be most crowded? Least crowded? Why? Be prepared to explain your reasoning. Answers will vary

POPULATION DENSITY

Population density is a measure of population per unit area. It can be applied to crops (# of plants per acre), people living in a defined area (# of people per square mile), etc.

Use the information above in the "Inquiry Question" to find the population density for each city.

Sierra Vista, AZ	Paramount, CA	Diamond Bar, CA	
274 people per mi ²	11,608 people per mi ²	3,814 people per mi ²	

Compare the population densities found above with some other cities around the world ...

	Population	Land Area (mi ²)	Population Density
Dhaka, Bangladesh	15,414,000	134	115,030 people per mi ²
Buenos Aires, Argentina	13,639,000	1,020	13,372 people per mi ²
Mexico City, Mexico	19,463,000	790	24,637 people per mi ²
Manila, Philippines	21,951,000	550	39,911 people per mi ²

CROP DENSITY OF SUNFLOWERS

In a study conducted at the University of Minnesota, sunflowers were planted in different fields and studied to determine the best way farmers could produce as much sunflower seed as possible while using the fewest number of plants possible. (Link at bottom of note guide)

Mark has a field in the shape of a trapezoid with vertices S (0, 0), N (1480, 0), F (1480, 1285), and R (740, 1285) where each unit on the coordinate plane represents one foot. After reading the study done at the University of Minnesota, Mark determines that he needs to plant 15,000 sunflower plants per acre to have the maximum yield.

1) What is the area of Mike's field to the nearest hundredth of an acre? (HINT: 1 acre equals 43,560 ft²)

 $\frac{1}{2}(1285)(740+1480)$ **1,426,350 ft² 32.74 acres**

2) Approximately how many sunflower plants should Mark plant on his field to have the maximum yield? Approximately 491,100 plants

http://www.extension.umn.edu/garden/yard-garden/flowers/sunflower-plant-population-and-its-arrangement/