
Lesson 1: Exit Ticket

Testing, Testing

Given: The chart below shows the results of a survey given about movie preferences. Use the diagram to answer the problems.

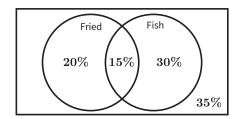
- **a.** What is P(Above age 30|Prefer comedy)?
- **b.** What is the P(Prefers adventure)?
- **c.** What is the statement that describes the probability $\frac{224}{337}$?
- **d.** What kind of movie are people below age 30 likely to prefer?

Lesson 2: Exit Ticket

Favorite Flavors

A poll was taken in a middle school to determine the amount of time spent on independent practice. The results are compiled in the two-way table below:

	7th graders	8th graders	Total
More than One Hour	21	29	50
Less than One Hour	14	12	26
Total	35	41	76

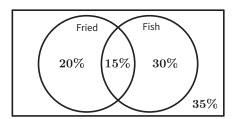

Use the table to find:

- **a.** P(More than one hour)
- **b.** P(Less than one hour|7th grade)
- **c.** P(8th grade and less than one hour)

Lesson 3: Exit Ticket Fried Freddy's

At Fried Freddy's, you can get fish or chicken and you can choose grilled or fried. The Venn diagram you used in the lesson is shown below.

At Fried Freddy's, you can get fish or chicken, and you can choose grilled or fried. The Venn diagram you used in the lesson is shown.



Use the diagram to find $P(\text{Fried} \cup \text{Chicken}) = P(\text{Fried or Chicken})$.

Lesson 4: Exit Ticket

I Will Survive!

Freddy's back! Use the definition of conditional probability to find $P(\mathrm{Fish}|\mathrm{Fried})$.

Lesson 5: Exit Ticket

Declaring Independence

Given:

$$P(A) = rac{3}{5}$$

$$P(B) = \frac{15}{16}$$

$$P(A \text{ and } B) = \frac{9}{16}$$

Are \boldsymbol{A} and \boldsymbol{B} independent events? Explain.

Lesson 6: Exit Ticket

Striving for Independence

P(A)=0.5, P(B)=0.4, and $P(A \ {
m or}\ B)=0.8$. Determine whether A and B are independent or dependent, and justify your answer.