SECONDARY MATH I // MODULE 1
SEQUENCES - 1.1

1.1

READY, SET, GO!

Name

Period

Date

READY

T

0

O

0

O

0

0

0

0

0

O

 \mathbf{O}

000

0

0

0

O O

 \bigcirc

0

 \bigcirc

0

0

O O

O O

()

Topic: Recognizing Solutions to Equations

The solution to an equation is the value of the variable that makes the equation true. In the equation 9a + 17 = -21, "a" is the variable. When a = 2, $9a + 17 \neq -19$, because 9(2) + 17 = 35. Thus a = 2 is NOT a solution. However, when a = -4, the equation is true 9(-4) + 17 = -19. Therefore, a = -4 must be the solution.

Identify which of the 3 possible numbers is the solution to the equation.

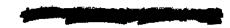
1.
$$3x + 7 = 13$$
 $(x = -2; x = 2; x = 5)$

2.
$$8-2b=-2$$
 $(b=-3; b=0; b=5)$

Answer: x = 2

3.
$$5+4g+8=1$$
 $(g=-3; g=-1; g=2)$

4.
$$6t - 5 + 5t = 105$$
 $(t = 4; t = 7; t = 10)$


Some equations have two variables. You may recall seeing an equation written like the following: y = 5x + 2. We can let x equal a number and then work the problem with this x- value to determine the associated y- value. A solution to the equation must include both the x- value and the y- value. Often the answer is written as an ordered pair. The x- value is always first. Example: (x, y). The order matters!

Determine the y-value of each ordered pair based on the given x-value.

5.
$$y = 6x - 15$$
; (8,

6.
$$y = -4x + 9$$
; (-5,

Answer: (8, 33), (-1, -21), (5, 15)

7.
$$y = 2x - 1$$
; (-4,

8.
$$y = -x + 9$$
; (-9,

Answer: (-4, -9}, (0, -1), (7, 13)

SET

Topic: Using a constant rate of change to complete a table of values

Fill in the table. Then write a sentence explaining how you figured out the values to put in each cell.

9. You run a business making birdhouses. You spend \$600 to start your business, and it costs you \$5.00 to make each birdhouse.

# of birdhouses	1	2	3	4	5	6	7
Total cost to build	605	610	615	620	625	630	635

Explanation:

The start up cost is \$600 so that plus \$5 for each additional one is how you get the total.

10. You make a \$15 payment on your loan of \$500 at the end of each month.

# of months	1	2	3	4	5	6	7
Amount of money owed	-	49P0	*	400-	4	-	

Explanation: To

11. You deposit \$10 in a savings account at the end of each week.

# of weeks	1	2	3	4	5	6	7
Amount of money saved	10	20	30	40	50	60	70

Explanation: There is no mention of an initial value but you add 10 every week.

12. You are saving for a bike and can save \$10 per week. You have \$25 when you begin saving.

	# of weeks	1	2	3	4	ង	6	7
A	mount of money saved		*	•	•	•	•	-

Explanation:

SEQUENCES -1.1

1.1

GO

CF

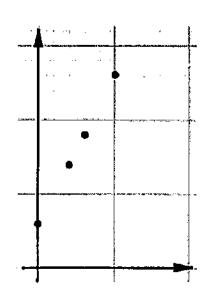
0

0000

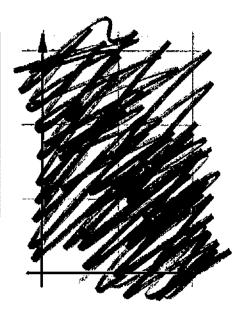
Ō

O

O


O

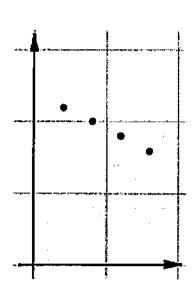
O O O O \mathbf{O} O O O O O O O O O O O Topic: Graph Linear Equations Given a Table of Values.


Graph the ordered pairs from the tables on the given graphs.

13.

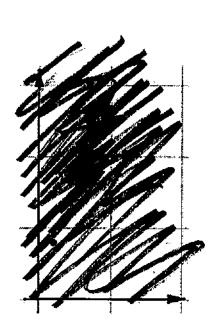
x	у
0	3
2	7
3	9
5	13

14.	
x	у
0	14
4	10
7	7
9	5



15.

O


0

x	у
2	11
4	10
6	9
8	8

16.

10.	
x	у
1	4
2	7
3	10
4	13

© 2016 Mathematics Vision Project
All Rights Reserved for the Additions and Enhancements
mathematics vision project.org

SECONDARY MATH I // MODULE 1 SEQUENCES - 1.2

1.2

READY, SET, GO!

Name

Period

Date

READY

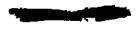
Topic: Using function notation

To evaluate an equation such as y = 5x + 1 when given a specific value for x, replace the variable x with the given value and work the problem to find the value of y.

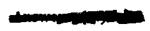
Example: Find y when x = 2. Replace x with 2. y = 5(2) + 1 = 10 + 1 = 11.

Therefore, y = 11 when x = 2. The point (2, 11) is one solution to the equation y = 5x + 1. Instead of using x and y in an equation, mathematicians often write f(n) = 5n + 1 because it can give more information. With this notation, the direction to find f(2), means to replace the value of n with 2 and work the problem to find f(n). The point (n, f(n)) is in the same location on the graph as (x, y), where n describes the location along the x-axis, and f(n) is the height of the graph.

Given that f(n) = 8n - 3 and g(n) = 3n - 10, evaluate the following functions with the indicated values.


1.
$$f(5) =$$

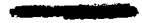
$$2. g(5) =$$


3.
$$f(-4) =$$

4.
$$g(-4) =$$

Answer: f(5) = 37

Answer: f(-4) = -35


5.
$$f(0) =$$

6.
$$g(0) =$$

7.
$$f(1) =$$

8.
$$g(1) =$$

Answer: f(0) = -3

Answer: f(1) = 5

Topic: Looking for patterns of change Complete each table by looking for the pattern.

9.	Term	1st	2 nd	3rd	4th	5 th	6 th	7 th	8th
	Value	2	4	8	16	32	64	128	256

10.	Term	1st	2nd	3rd	4th	5th	6 th	7th	8th
	Value		•		•	4	•	•	

11.	Term	1st	2 nd	3rd	4th	5 th	6 th	7th	8դր
	Value	160	80	40	20	10	5	2.5	1.25

12.	Term	1st	2nd	3rd	4th	5 ^{ւհ}	6 th	7th	8 배
	Value	*	7	₩			4		

SECONDARY MATH I // MODULE 1
SEQUENCES - 1.2

1.2

SET

.

0

0

0

0

0

000

0

0

0

0

0

0

0

0

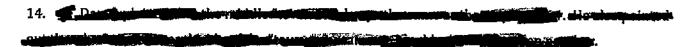
 \mathbf{O}

O

Topic: Use variables to create equations that connect with visual patterns.

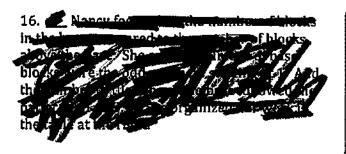
In the pictures below, each square represents one tile.

Step 1 Step 2 Step 3 Step 4 Step 5


13. Draw Step 4 and Step 5.

The students in a class were asked to find the number of tiles in a figure by describing how they saw the pattern of tiles changing at each step. Match each student's way of describing the pattern with the appropriate equation below. Note that "s" represents the step number and "n" represents the number of tiles.

(a)
$$n = (2s-1) + (s-1)$$


(b)
$$n = 3s - 2$$

(c)
$$n = s + 2(s - 1)$$

15. b Sally counted the number of tiles at each step and made a table. She explained that the number of tiles in each figure was always 3 times the step number minus 2.

step number	1	2	3	4	5	6
number of tiles	1	4	7	10	13	16

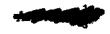
Step number	# in base + #on top		
,	4		
•	200		
•			
*			
₩			

© 2016 Mathematics Vision Project
All Rights Reserved for the Additions and Enhancements
mathematics vision project.org

SECONDARY MATH! // MODULE 1
SEQUENCES - 1.2

1.2

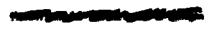
GO


Topic: The meaning of an exponent

Write each expression using an exponent.

20.
$$\frac{1}{3} \times \frac{1}{3}$$

Answer: 65


Answer: 154

A) Write each expression in expanded form. B) Then calculate the value of the expression.

22.
$$3^2$$

23.
$$5^3$$

25.
$$7(2)^3$$

28.
$$16\left(\frac{1}{2}\right)^3$$

Answer: 7-2-2-2 = 56

READY, SET, GO!

Name

Period

Date

READY

Ţ

 \bigcirc

 \bigcirc

0 O \bigcirc

0 0

0 0

O

0

lacksquare \bigcirc 0 \mathbf{O}

O

O

 \bigcirc \bigcirc

 \bigcirc

 \bigcirc

0

 \mathbf{O}

 \mathbf{O}

O

 \bigcirc

0

0

0

0 \mathbf{O} O 0

 \mathbf{O}

0

 \mathbf{O}

0

0

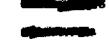
0

Topic: Interpreting function notation

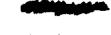
A) Use the given table to identify the indicated value for n. B) Then using the value for n that you determined in A, use the table to find the indicated value for B.

n	1	2	3	4	5	6	7	8	9	10
f(n)	-8	-3	2	7	12	17	22	27	32	37

- 1. A) When f(n) = 12, what is the value of n? Answer: n = 5
 - B) What is the value of f(n-1)?


- 2. A) When f(n) = 17, what is the value of n?
 - B) What is the value of f(n-1)?
- 3. A) When f(n) = 32, what is the value of n?
 - Answer: n = 9B) What is the value of f(n+1)?

Answer: 37


- 4. A) When f(n) = 2, what is the value of n? Answer: n = 3
 - B) What is the value of f(n+3)?

Answer: 17

- 5. A) When f(n) = 27, what is the value of n?
 - B) What is the value of f(n-6)?

- 6. A) When f(n) = -8, what is the value of n?
 - B) What is the value of f(n + 9)?

SET

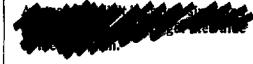
Topic: Comparing explicit and recursive equations

Use the given information to decide which equation will be the easiest to use to find the indicated value. Find the value and explain your choice.

7. Explicit equation: y = 3x + 7Recursive: now = previous term + 3

term #	1	2	3	4
value	10	13	16	

19 Find the value of the 4th term. Explanation:


Answer: Recursive is easiest to use because you know what the 3rd term is so you can add 3 to it to get the 4th term.

8. Explicit equation: y = 3x + 7Recursive: now = previous term + 3

	term #	1	2	hør	50
ł	value	10	13	147	

Find the value of the 50th term. Explanation:

© 2016 Mathematics Vision Project All Rights Reserved for the Additions and Enhancements mathematicsvisionproject.org

SECONDARY MATH I // MODULE 1 SEQUENCES - 1.3

9. The value of the 8th term is 78.

The sequence is increasing by 10 at each step.

Explicit equation: y = 10x - 2

Recursive: now = previous term + 10

Find the 20th term. 198

Explanation:

Answer: Use explicit to plug in 20 for x to get the value of the 20th term.

11. The value of the 4th term is 80.

The sequence is being doubled at each step.

Explicit equation: $y = 5(2^x)$

Recursive: now = previous term * 2

Answer: Use recursive to multiply the 4th term by 2 to get 160.

10. The value of the 8th term is 78.

The sequence is increasing by 10 at each step.

Explicit equation: y = 10x - 2

Recursive: now = previous term + 10

Find the 9th term. ______Explanation:

Answer: Manager 1988 and 1988 and 1988

12. The value of the 4th term is 80.

The sequence is being doubled at each step.

Explicit equation: $y = 5(2^x)$

Recursive: now = previous term * 2

Find the value of the 7th term.

Explanation:

Answer:

GO

Topic: Evaluating Exponential Equations

Evaluate the following equations when $x = \{1, 2, 3, 4, 5\}$. Organize your inputs and outputs into a table of values for each equation. Let x be the input and y be the output.

13.
$$y = 4x$$

14
$$y = (-3)^x$$

15.
$$y = -3x$$

16.
$$v = 10^{x}$$

X	y	x	<i>y</i>
input	output	input	output
1	4	1	4
2	16	2	
3	64	3	
4	256	4	Æ
5	1024	5	75

X	l y
input	output
1	-3
2	-9
3	-27
4	-81
5	-243

×	У
input	output
1	#
2	4
3	3
4	ight.
5	

17. If $f(n) = 5^n$, what is the value of f(4)?

Answer: 625

READY, SET, GO!

Name

Period

Date

READY

Topic: Use function notation to evaluate equations.

Evaluate the given equation for the indicated function values.

1.
$$f(n) = 5n + 8$$

2.
$$f(n) = -2n + 1$$

1.
$$f(n) = 5n + 8$$
 2. $f(n) = -2n + 1$ 3. $f(n) = 6n - 3$ 4. $f(n) = -n$

$$4. \ f(n) = -n$$

$$f(4) = 28$$

$$f(10) =$$

$$f(4) = 28$$
 $f(10) = 6$ $f(-5) = -33$ $f(9) = 6$

$$f(9) =$$

$$f(-2) = -2$$

$$f(-1) = \blacktriangleleft$$

$$f(0) = -3$$

$$f(-11) = \blacksquare$$

5.
$$f(n) = 5^n$$

5.
$$f(n) = 5^n$$
 6. $f(n) = 3^n$

7.
$$f(n) = 10^n$$

B.
$$f(n) = 2^n$$

$$f(2) = 25$$

$$f(4) = \blacksquare$$

$$f(6) = 1,000,000$$

$$f(0) =$$

$$f(3) = 125$$

$$f(3) = 125$$
 $f(1) =$

$$f(0) = 1$$

$$f(5) =$$

SET

Topic: Finding terms for a given sequence

Find the next 3 terms in each sequence. Identify the constant difference. Write a recursive function and an explicit function for each sequence. Circle where you see the common difference in both functions. (The first number is the 1st term, not the 0th term).

- 9. A) 3,8,13,18,23,<u>28,33,</u>38,...
- B) Common Difference: ____5
- C) Recursive Function:
- Answer: f(n) = 5n 2 or D) Explicit Function: f(n) = 3 + 5(n-1)
- Answer: f(1) = 3, f(n) = f(n-1) + 5
- 10.A) 11,9,7,5,3, <u>*</u>, <u>*</u>, ...
- B) Common Difference: ____
- C) Recursive Function: ___ Answer:
- D) Explicit Function:
- B) Common Difference: ___
- Recursive Function: ______
- Answer: f(n) = -1.5n + 4.5 or D) Explicit Function: f(n) = 3 - 1.5(n - 1)

Answer: f(1) = 3, f(n) = f(n-1) - 1.5

O

O

O

O

0

0

0

0

0

0

0

0

O

0

O O O

0

0000000000000

SEQUENCES - 1.4

GO

Topic: Reading a graph

Olaf is a mountain climber. The graph shows Olaf's location on the mountain beginning at noon. Use the information in the graph to answer the following questions.

17. Is the value of f(n) the time or the elevation?

Answer: Elevation

C

0

0

0 0 0

0 O

O 0

0

0

0 O

O O

0

0

O

O O O

O 0 O 0 O

O

0

0

O

O

O

O O O O O O 0

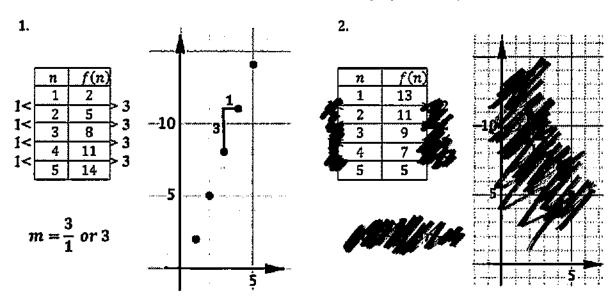
0

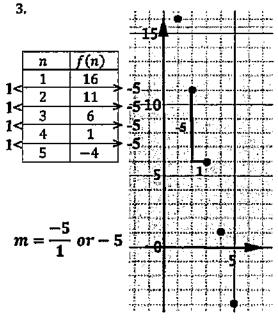
0

0

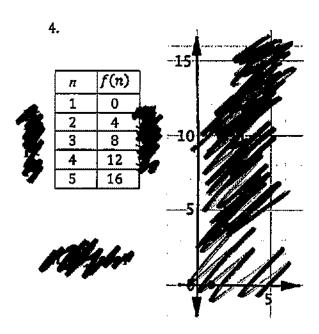
READY, SET, GO!

Name


Period

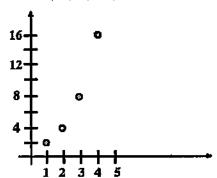

Date

READY


Topic: Rates of change in a table and a graph

The same sequence is shown in both a table and a graph. Indicate on the table where you see the rate of change of the sequence. Then draw on the graph where you see the rate of change.

© 2016 Mathematics Vision Project All Rights Reserved for the Additions and Enhancements mathematicsvisionproject.org



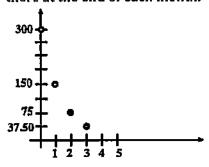
SET

Topic: Recursive and explicit functions of geometric sequences

Below you are given various types of information. Write the recursive and explicit functions for each geometric sequence. Finally, graph each sequence, making sure you clearly label your axes.

5. 2,4,8,16,...

Number Time of cells (days) 1 3 2 6 3 12 24


Recursive: f(1) = 2, $f(n) = f(n-1) \cdot 2$

Recursive:_

Explicit: $f(n) = 2(2)^{x-1} or 2^2$

Explicit:

7. Claire has \$300 in an account. She decides 8. Tania creates a chain letter and sends it to she is going to take out half of what's left in there at the end of each month.

four friends. Each day each friend is then instructed to send it to four friends and so forth.

Recursive: $f(0) = 300, f(n) = f(n-1) \cdot \frac{1}{2}$ Recursive:

 $f(n) = 300 \cdot \frac{1}{2}^x$ Explicit:

Explicit:___

U

0

0

0000

O

000

000

0

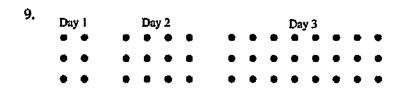
0

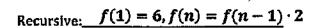
0

O

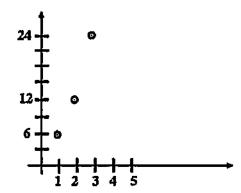
0

0 0


O

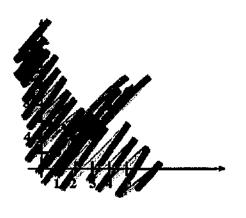

0

000

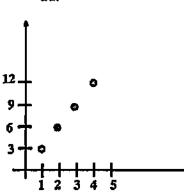

0

0

Explicit:
$$f(n) = 6(2)^{x-1}$$



GO


Topic: Recursive and explicit functions of arithmetic sequences

Below you are given various types of information. Write the recursive and explicit functions for each <u>arithmetic sequence</u>. Finally, graph each sequence, making sure you clearly label your axes.

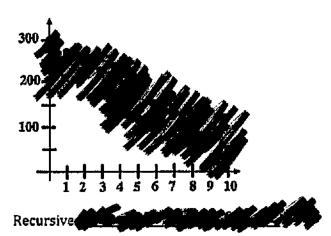
10. 2,4,6,8,...

11.

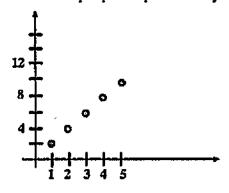
	Time (days)	Number of cells
	1	3
	2	6
	3	9
,	4	12

Recursive: 5

Recursive: f(1) = 3, f(n) = f(n-1) + 3

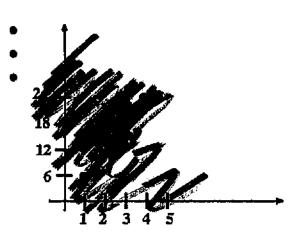

Explicit: $f(n) = 3n \ or \ 3(n-1) + 3$

© 2016 Mathematics Vision Project All Rights Reserved for the Additions and Enhancements mathematics vision project.org



SEQUENCES - 1.5

12. Claire has \$300 in an account. She decides she is going to take out \$25 each month.


13. Each day Tania decides to do something nice for 2 strangers. What is the relationship between the number people helped and days?

Recursive: f(1) = 2, f(n) = f(n-1) + 2

Explicit:

Explicit: f(n) = 2n or 2(n-1) + 2

1.6

READY, SET, GO!

Name

Period

Date

READY

Topic: Finding the common difference

Find the missing terms for each <u>arithmetic</u> sequence and state the common difference.

1. 5, 11, <u>17</u>, 23, 29, <u>35</u>...

Common Difference = 6

3. 8, 21 , 34 , 47, 60...

Common Difference = 13

5, 5, 10 , 15 , 20 , 25 ...

Common Difference = $\frac{5}{}$

Common Difference = ____

Common Difference = _

Common Difference = _____

SET

Topic: Writing the recursive function

Two consecutive terms in an arithmetic sequence are given. Find the recursive function.

7. If f(3) = 5 and f(4) = 8 ...

f(5) = 11. f(6) = 14. Recursive Function: f(n) = f(n-1) + 3, f(1) = -1

8. If f(2) = 20 and f(3) = 12 ...

f(4) = f(5) = f(5). Recursive Function:

9. If f(5) = 3.7 and f(6) = 8.7 ...

f(7) = 13.7. f(8) = 18.7. Recursive Function: f(n) = f(n-1) + 5, f(1) = -16.3

0 O O

O

 \mathbf{O}

0 0 \mathbf{O} \mathbf{O}

 \mathbf{O} 0 0 O

O **(**) 0 0

 \mathbf{O}

O O

O

0

0

0

O \mathbf{O}

0

O

O

0

0

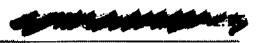
0 O

O \bigcirc

O

0

O


 \mathbf{O}

0

Two consecutive terms in a geometric sequence are given. Find the recursive function.

10. If
$$f(3) = 5$$
 and $f(4) = 10$...

$$f(5) = 4$$
. $f(6) = 4$. Recursive Function:

11. If
$$f(2) = 20$$
 and $f(3) = 10$...

$$f(4) = \underline{5}$$
. $f(5) = \underline{2.5}$. Recursive Function:

1. If
$$f(2) = 20$$
 and $f(3) = 10$...
$$f(4) = \frac{5}{2}$$
. $f(5) = \frac{2.5}{2}$. Recursive Function:
$$f(n) = \frac{1}{2}f(n-1), f(1) = 40$$

12. If
$$f(5) = 20.58$$
 and $f(6) = 2.94$...

$$f(7) = 1$$
. $f(8) = 1$. Recursive Function:

GO

Topic: Evaluating using function notation

Find the indicated values of f(n).

13.
$$f(n) = 2^n$$

Find
$$f(5)$$
 and $f(0)$.

Answer:
$$f(5) = 32$$
, $f(0) = 1$

$$14. f(n) = 5^n$$

Find
$$f(4)$$
 and $f(1)$.

Answer: ت**ور گروارندا شا**

15.
$$f(n) = (-2)^n$$

Find
$$f(3)$$
 and $f(0)$.

Answer:
$$f(3) = -8$$
, $f(0) = 1$

16.
$$f(n) = -2^n$$

Find
$$f(3)$$
 and $f(0)$.

Answer: manage of

In what way are the problems in #15 and #16 different? 17.

Answer: In #15, the calculation is (-2)(-2)(-2) = -8 and $(-2)^0 = 1$. In #16, the calculation is $-(2 \cdot 2 \cdot 2) = -8$ and $-(2)^0 = -1$.

18.
$$f(n) = 3 + 4(n-1)$$
 Find $f(5)$ and $f(0)$.

Find
$$f(5)$$
 and $f(0)$

Answer:

19.
$$f(n) = 2(n-1) + 6$$
 Find $f(1)$ and $f(6)$.
Answer: $f(1) = 6$, $f(6) = 16$

O

O

0

()

0

0

 \mathbf{O}

O

 $\frac{\mathbf{O}}{\mathbf{O}}$

 \mathbf{O}

 \mathbf{O}

()

 \bigcirc

0

O O

O O

O

0

0 0

0

0

O O

0

0

0

O

READY, SET, GO!

Name

Period

Date

READY

Topic: Distinguishing between arithmetic and geometric sequences

Find the missing values for each arithmetic or geometric sequence. Underline whether it has a constant difference or a constant ratio. State the value of the constant difference or ratio. Indicate if the sequence is arithmetic or geometric by circling the correct answer.

1. 5, 10, 15, ____, 25, 30, ____...

... Answers: 20, 35

Common difference or ratio?

Common Difference/ratio = 5

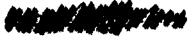
Arithmetic or geometric?

3. 2, 5, 8, ____, 14, ____ ... Answers: 11, 17

Common difference or ratio?

Common Difference/ratio = ___3

Arithmetic or geometric?


2. 20, 10, ____, 2.5, ___...

Answers:

Common Difference/ratio =

4. 30, 24, ____, 12, 6, ...

Common Difference/ratio = _____

SET

Topic: Recursive and explicit equations

Determine whether the given information represents an arithmetic or geometric sequence. Then write the recursive and the explicit equation for each.

5. 2, 4, 6, 8, ...

Arithmetic or geometric?

Recursive:

$$f(1) = 2, f(n) = f(n-1) + 2$$

Explicit:

$$f(n) = -2n$$

6. 2, 4, 8, 16,

Explicit:

7. Time (in days)	Number of dots
1	3
2	7
3	11
4	15

Arithmetic or geometric?

Recursive: f(1) = 3, f(n) = f(n-1) + 4

Explicit: f(n) = 4n - 1 or 4(n - 1) + 3

8.	
Time (In days)	Number of cells
1	5
2	8
3	12.8
4	20.48

Explicit:

9. Michelle likes chocolate but it causes acne. She chooses to limit herself to three chocolate bars every 5 days. (So, she eats part of a bar each day.)

Arithmetic or geometric?

Recursive: f(1) = 2, f(n) = f(n-1) + 2

Explicit: f(n) = -2n 10. Scott decides to add running to his exercise routine and runs a total of one mile his first week. He plans to double the number of miles he runs each week.

Explicit:

11. Vanessa has \$60 to spend on rides at the state fair. Each ride costs \$4.

Arithmetic or geometric?

Recursive: f(0) = 60, f(n) = f(n-1) - 4

Explicit:

f(n) = 60 - 4n

12. Cami invested \$6,000 into an account that earns 10% interest each year. (Hint: ... Make a table of values to help yourself.)

Recursive:

Explicit:

0

O

0

0

O

O

0

O

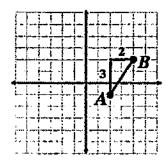
O

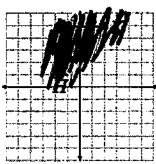
0

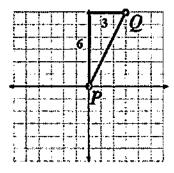
O

000000

0


0

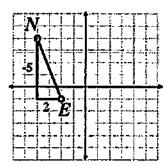

GO

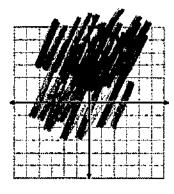

Topic: Graphing and counting slope between two points.

For the following problems two points and a slope are given. Plot and label the 2 points on the graph. Draw the line segment between them. Then sketch on the graph how you count the slope of the line by moving up or down and then sideways from one point to the other.

13. A(2,-1) and B(4,2)

Slope:
$$m = \frac{3}{2}$$


Slope:
$$m = 1$$
 or $\frac{1}{1}$


Slope:
$$m = 2$$
 or $\frac{2}{1}$

For the following problems, two points are given. Plot and label these points on the graph. Then count the slope.

16. C(-3,0) and D(0,5)

Slope: m =

Slope:
$$m =$$

Answer: $-\frac{5}{2}$

Slope: m =

© 2016 Mathematics Vision Project
All Rights Reserved for the Additions and Enhancements
mathematics vision projectors

1.8

READY, SET, GO!

Name

Period

Date

READY

Topic: Common Ratios

Find the common ratio for each geometric sequence.

1. 2, 4, 8, 16...

Answer: 2

2. $\frac{1}{2}$, 1, 2, 4, 8...

3. -5, 10, -20, 40...

Answer: -2

4. 10, 5, 2.5, 1.25...

SET

Topic: Recursive and explicit equations

Fill in the blanks for each table; then write the recursive and explicit equation for each sequence.

5. Table 1

J. IUDIC Z					
X	1	2	3	4	5
v	5	7	9	11	13

Recursive: f(1) = 5, f(n) = f(n-1) + 2

Explicit: f(n) = 2(n-1) + 5 or 2n + 3

6. Table 2

x	у
1	
2	
3	
4	
5	-11

7. Table 3

х	y
1	3
2	9
3	27
4	81
5	243

8. Table 4

X	У.
1	
2	· .
3	Vil
4	7
5	4

Recursive:

Recursive:

Explicit

Answer: f(1) = 3,

 $f(n) = f(n-1) \cdot 3$

Recursive:

Explicit:

Answer: $f(n) = 3^n$

Explicit:

O

O 0

O

O

O 0 O O O \mathbf{O} 0 0 0 0 0 O

0

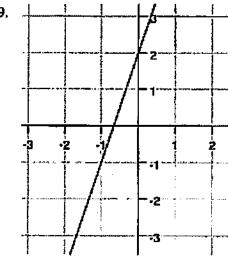
0 0

O O 0 O O O O O O

0

O O O 0 O

O


0

GO

Topic: Writing equations of lines given a graph.

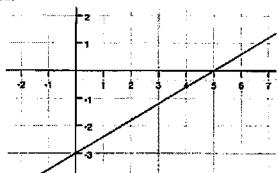
Write each equation of the line in y = mx + b form. Name the value of m and b. Recall that m is the slope or rate of change and b is the y-intercept.

9,

m =

b =

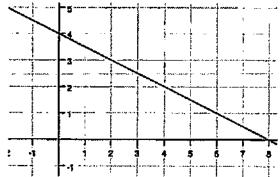
Equation:


Answer: m = 3, b = 2, y = 3x +

m =

Equation:

11.



Equation:

Answer: $m = \frac{3}{5}$, b = -3, $y = \frac{3}{5}x - 3$

12.

10.

m =

Equation: b =

Answer:

READY, SET, GO!

Name

Period

Date

READY

Topic: Comparing arithmetic and geometric sequences

1. How are arithmetic and geometric sequences similar?

Answer: Arithmetic and geometric sequences are similar since they both can be modeled with recursive and explicit functions. They both also have a common difference or ratio.

2. How are they different?

SET

Topic: Finding missing terms in an Arithmetic sequence

Each of the tables below represents an <u>arithmetic</u> sequence. Find the missing terms in the sequence, showing your method.

3. Table 1

Х	1	2	3
у	3	7.5	12
	+4	.5	-4.5

Methods may vary.

Method:
$$\frac{12-3}{3-1} = \frac{9}{2} = 4.5$$

4. Table 2

X	У	
1	A.	
2	7 /-	
3		-
4		

5. Table 3

X	У	
1	24	-9
2	15	
3	6	-9
4	-3	

6. Table 4

X	у	
1	*	
2		
3		
4	41	1
5	-	

Method:

Method:
$$\frac{6-24}{3-1} = \frac{-18}{2} = -9$$

Mathod:

0

0 0

0

O

0 0

()0

0

O

O 0

()

0 \bigcirc

O O

 \bigcirc

O 0

O O O

 \Box

O

O () **(**)

 \Box

O

 \mathbf{D} \Box

D

D

GO

Topic: Sequences

Determine the recursive and explicit equations for each. (if the sequence is not arithmetic or geometric, identify it as neither and don't write the equations).

7. 5, 9, 13, 17,...

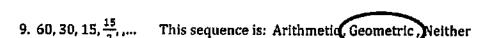
This sequence is: Arithmetic, Feometric, Neither

Recursive Equation: _____ Explicit Equation: _____

Answer: f(1) = 5, f(n) = f(n-1) + 4

Answer: f(n) = 4(n-1) + 5 or 4n + 1

8. 60, 30, 0, -30 ,...


This sequence is:

Recursive Equation: _

_ Explicit Equation: _

Answer: Maddle Color

Answer: 🏄

___ Explicit Equation: _____

Recursive Equation: _____

Answer: $f(1) = 60, f(n) = \frac{1}{2}f(n-1)$ Answer: $f(n) = 120 \cdot \frac{1}{2}^n$ or $60 \cdot \frac{1}{2}^{n-1}$

10,

(The number of black tiles above)

This sequence is:

Recursive Equation: _

Explicit Equation; _

Answer:

Answer:

11.. 4, 7, 12, 19, ,...

This sequence is: Arithmetic, Geometric Neither

Recursive Equation: _____ Explicit Equation: _____

Answer: f(1) = 4, f(n) = f(n-1) + 2n + 1 Answer: $f(n) = n^2 + 3$

READY, SET, GO!

Name

Period

Date

READY

() ()

000

0

0

0

0

0

()

O

0

0000000

0

O

O

0

O

O

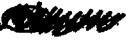
O O Topic: Arithmetic and geometric sequences

For each set of sequences, find the first five terms. Then compare the growth of the arithmetic sequence and the geometric sequence. Which grows faster? When?

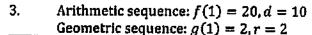
1. Arithmetic sequence: f(1) = 2, common difference, d = 3

Geometric sequence: g(1) = 2, common ratio, r = 3

Arithmetic	Geometric
f(1)=2	g(1) = 2
f(2) = 5	g(2) = 6
f(3) = 8	g(3) = 18
f(4) = 11	g(4) = 54
f(5) = 14	g(5) = 162


a) Which value do you think will be more, f(100) or g(100)? b) Why?

hy? Answer: Function g is growing faster than f.


2. Arithmetic sequence: f(1) = 2, common difference, d = 10Geometric sequence: g(1) = 120, common ratio, $r = \frac{1}{2}$

Arithmetic	Geometric
$f(1) = \mathbf{Z}$	$g(1) = \mathbf{g}(1)$
f(2) = 0	g(2) =
f(3) =	g(3) = 3
f(4) =	g(4) = 1
$f(5) = \mathbf{T}$	$g(5) = \mathbf{I}$

a) Which value do you think will be more.

b) Why?

Arithmetic	Geometric	
f(1) = 20	g(1)=2	
f(2) = 30	g(2) = 4	
f(3) = 40	g(3) = 8	
f(4) = 50	g(4) = 16	
f(5) = 60	g(5) = 32	

- a) Which value do you think will be more, f(100) o g(100)?
- b) Why? Answer: Function g is multiplying so it is growing faster.

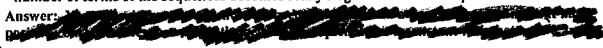
© 2016 Mathematics Vision Project All Rights Reserved for the Additions and Enhancements mathematics vision projectors SEQUENCES - 1.10

Arithmetic sequence: f(1) = 50, common difference, d = -104. Geometric sequence: g(1) = 1, common ratio, r = 2

Arithmetic	Geometric
f(1) = 0	$g(1) = \mathbf{g}$
f(2) =	g(2) = 4
f(3) = 3	g(3) = 7
f(4) = 2	$g(4) = \mathbf{G}$
f(5) = 1	g(5) = 4

a) Which value do you think will be more,

Arithmetic sequence: f(1) = 64, common difference, d = -25. Geometric sequence: g(1) = 64, common ratio, $r = \frac{1}{2}$


Arithmetic	Geometric
f(1) = 64	g(1) = 64
f(2) = 62	g(2) = 32
f(3) = 60	g(3) = 16
f(4) = 58	g(4) = 8
f(5) = 56	g(5) = 4

a) Which value do you think will be more, f(100) or g(100)?

b) Why?

Answer:Function f will 🕊 be negative and g will be a small fraction close to

Considering arithmetic and geometric sequences, would there ever be a time that a 6. geometric sequence does not out grow an arithmetic sequence in the long run as the number of terms of the sequences becomes really large?

SET

Topic: Finding missing terms in a geometric sequence

Each of the tables below represents a geometric sequence. Find the missing terms in the sequence. Show your method.

7. Table 1

•				
	x	1	2	3
	У	3	6 ог -6	12

Method:

 $\frac{12}{3}$ = 4 and since 3 – 1 = 2, take the square root of 4: $\sqrt{4}$ = ± 2 So 2 or -2 is the constant ratio.

SECONDARY MATHI // MODULE 1

SEQUENCES - 1.10

1.10

8.	Table	2
υ.	たい ひきむ	·

X	<i>y</i> ₂
1	
2	
3	11
4	4

Х	у
1	5
2	10,-10
3	20
4	40, -40

10. Table 4

х	у
1	
2	
3	
4	
5	3.3

Cathod:

T

0

0

O

00000

0

0

O

0


0

0

0

0

000

Method: $\frac{20}{5} = 4$ and $\sqrt[3-1]{4} = \sqrt[2]{4} = \pm 2$

GO

Topic: Writing the explicit equations of a geometric sequence

Given the following information, determine the explicit equation for each geometric sequence.

11. f(1) = 8, common ratio r = 2

Answer:
$$f(n) = 8(2)^{n-1}$$

12.
$$f(1) = 4$$
, $f(n) = 3f(n-1)$

13.
$$f(n) = 4f(n-1)$$
; $f(1) = \frac{5}{3}$

Answer:
$$f(n) = \frac{5}{3}(4)^{n-1}$$

14. Which geometric sequence above has the greatest value at f(100)?

Answer:

READY, SET, GO!

Name

Period

Date

READY

Topic: Comparing linear equations and arithmetic sequences

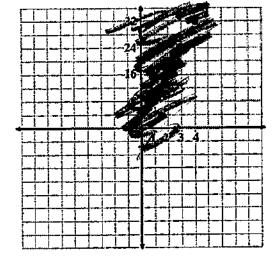
1. Describe the similarities and differences between linear equations and arithmetic sequences.

Similarities	Differences
Answers will vary. Possible answers below:	Answers will vary. Possible answers below:
They both have a constant rate of change.	Linear equations have a line going through its points on a graph.
When graphed, they make the shape of a line.	Sequences are just points and not any of the
They can be represented by the equation, $y = mx + b$.	numbers in between.

SET

Topic: Representations of arithmetic sequences

Use the given information to complete the other representations for each arithmetic sequence.


2. Recursive Equation: Answer:

Explicit Equation: Answer:

Table		
Days	Cost	
1	8	
2	16	
3	24	
4	32	
•		

Create a context

0

0

0

0

0

0

0

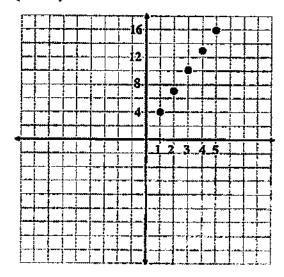
000000

O

0

0

0 0 0

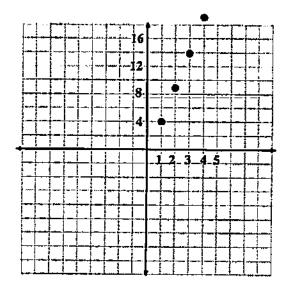

0

0

 3. Recursive Equation: f(1) = 4, f(n) = f(n-1) + 3

Explicit Equation: Answer: f(n) = 4 + 3(n - 1) Graph

	Table	
Day	Cookies	
1	4	
2	7	
3	10	
4	13	
5	16	


Create a context

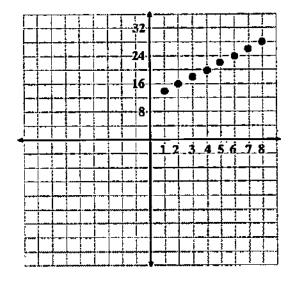
Answers will vary. Example: Johnny eats 4 cookies one day and then eats 3 cookies each day after that.

4. Recursive Equation: Answer: Graph

Explicit Equation:

Table		
Day_	Cents	
1	4	
2	9	
3	14	
4	19	
5	24	

Create a context



SECONDARY MATH I // MODULE 1
SEQUENCES - 1.11

5. Recursive Equation: Answer: f(1) = 14, f(n-1) + 2 Graph

Explicit Equation: Answer: f(n) = 14 + 2(n-1)

Ta	Table	
Row	Seats	
1	14	
2	16	
3	18	
4	20	

Create a context

Janet wants to know how many seats are in each row of the theater. Jamal lets her know that each row has 2 seats more than the row in front of it. The first row has 14 seats.

GO

Topic: Writing explicit equations

Given the recursive equation for each arithmetic sequence, write the explicit equation.

6.
$$f(n) = f(n-1) - 2$$
; $f(1) = 8$

Answer:

7.
$$f(n) = 5 + f(n-1); f(1) = 0$$

Answer: f(n) = 5(n-1)

8.
$$f(n) = f(n-1) + 1$$
; $f(1) = \frac{5}{3}$

Answer: