Commentary Mars, XX - 1. (200-inch roll) An estimation strategy would be to round 24 to 25 and think of it in terms of money. Four 25's is 100 and three more is 75; so she will need about 175 inches and will therefore buy the 200-inch roll. The exact answer for how much she needs (168 inches) will be obtained by some students by adding or multiplying. - 2. $(\frac{5}{7})$ of the children went to the theater; $\frac{2}{7}$ of the children stayed home.) The problem is a part: whole ratio problem. Students might want to draw a diagram of the seven children, and partition it accordingly, to find the answer. - 3. (\$7.95) The problem involves reading a menu and making decisions from the context of the story. The answer is found by adding \$3.50, \$2.95, \$0.75 and \$0.75. - 4. (2, 2, and 4; or 1, 4, and 2) Guess-check-revise or make a list are strategies that can be used with this problem. One creative approach is to notice that "one of each" means that the problem can be simplified by removing that much money (17¢) from the total, leaving 25¢ to be distributed among the three types. - 5. (a. school; b. store; c. bank) The Cartesian coordinate system is used in this problem. The first number in each ordered pair tells the horizontal distance; the second number tells the vertical distance. - 6. (a. 5 LB; b. 1 oz. c. 70 LB) This gives a student the chance to demonstrate they have real-world number sense. Unreasonable answers can be eliminated. - 7. (2) Students should have intuitive knowledge about balance scales for this problem. Since the triangle is on both sides of the scale, it doesn't matter how much it weighs -- it can be removed and the scale still balances. Then the square and two circles must weigh the same amount. Therefore, one circle weighs half of a square. - 8. (c, a, b, d) Visual estimation skills are required for this problem. Students might want to actually measure the lengths, to check their estimations.