Central Angle

mLXYZ=mXZ

Intercepted Arc

Arc Measure

The measure of an arc is equal to the measure of its corresponding central angle.

$$m\overline{JM} = m \angle JPM$$

Congruent central angles intercept congruent arcs, and congruent arcs are intercepted by congruent central angles.

What are \widehat{mAB} and \widehat{mACB} ?

SOLUTION

a. What is \widehat{mXZ} ? = [15]

Enter your answer.

b. What is \widehat{mXYZ} ? 245

A. How do you find the length s of an arc measured in degrees?

The measure of an arc is a fraction of 360.

The **arc length** is a fraction of the circumference.

Use a proportion to represent the relationship between arc length s, radius r, and arc measure n.

$$\frac{\text{arc length}}{\text{circumference}} = \frac{\text{arc measure}}{360}$$
$$\frac{s}{2\pi r} = \frac{n}{360}$$
$$s = \frac{n}{360} \cdot 2\pi r$$

The formula to find the length of an arc is $s = \frac{n}{360} \cdot 2\pi r$.

Arc Length

The length s of an arc of a circle is the product of the ratio relating the measure of the central angle in degrees to 360 and the circumference of the circle.

Central angle in degrees:

2. a. In a circle with radius 4, what is the length of an arc that has a measure of 80? Round to the nearest tenth.

$$S = \frac{N}{360} \cdot 2\pi\Gamma$$

$$\frac{80}{360} \cdot 2\pi(4)$$

$$\frac{2}{9}(8\pi)$$

$$\frac{16\pi}{9} = 1.8\pi$$

What is the length of \widehat{AD} ? Express the answer in terms of π .

$$5 = \frac{N}{360} \cdot 2\pi r$$

$$= \frac{140}{360} = 2\pi (4)$$

$$= \frac{7}{18} (8\pi)$$

$$\frac{56\pi}{18} = \frac{28\pi}{9}$$