Law of Sines

For any $\triangle ABC$ with side lengths a, b, and c opposite angles A, B, and C, respectively, the Law of Sines relates the sine of each angle to the length of the opposite side.

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{C}$$

For $\triangle XYZ$, what is YZ to the nearest tenth?

SOLUTION

$$X = \frac{75in51^{\circ}}{5in77}$$

 $X = 5.6$

What is XZ to the nearest tenth?

Enter your answer.
$$\frac{7}{\sin 77} = \frac{y}{\sin 52^{\circ}}$$

$$7 \sin 52^{\circ} = y \sin 77$$

$$y = \frac{7 \sin 52}{\sin 77}$$

$$= 5.7$$

What are $m \angle R$ and $m \angle S$ in $\triangle RST$?

SOLUTION

$$\frac{t}{\sin T} = \frac{s}{\sin S}$$

$$\frac{12.3}{\sin 74} = \frac{12.7}{\sin S}$$

$$12.3 \sin S = 12.7 \sin 74$$

$$5 \sin S = \frac{12.7 \sin 74}{12.3}$$

$$5 \sin S = \frac{12.7 \sin 74}{12.3}$$

$$6 \sin S = \frac{12.7 \sin 74}{12.3}$$

$$8 \sin S = \frac{12.7 \sin 74}{12.3}$$

$$8 \sin S = \frac{12.7 \sin 74}{12.3}$$

3. a. What is $m \angle N$?

Enter y 4 ranswer 2

$$Sin 70^{\circ} = Sin N$$

$$Sin^{\circ} \left(\frac{2 sin 70}{4}\right)$$

$$2 sin 70 = 4 sin N$$

$$Sin^{\circ} \left(\frac{2 sin 70}{4}\right)$$

$$MLN = 28^{\circ}$$

$$Sin N = \frac{2 sin 70}{4}$$

b. What is $m \angle O$?

The map shows the path a pilot flew between Omaha and Chicago in order to avoid a thunderstorm. How much longer is this route than the direct route to Chicago?

$$\frac{x}{\sin 22} = \frac{471}{\sin 13}$$

$$x \sin 113 = 471 \sin 22$$

$$x = \frac{471 \sin 22}{\sin 113}$$

$$= 191.7 \text{ mi}$$

4. Suppose the pilot chose to fly north of the storm. How much farther is that route than the direct route?

$$\frac{x}{\sin 15^{-}} = \frac{471}{\sin 148}$$

$$x \sin 148 = 471 \sin 15$$

$$x = \frac{471 \sin 15}{148}$$

$$= 230 \text{ mi}$$

$$470 \qquad Pilot flev$$

$$471 \qquad 19 \text{ miles}$$

7. What are $m \angle Q$ and $m \angle R$?

$$Sin R = \frac{14sin 18}{20}$$

$$Sin \left(\frac{14sin 18}{20}\right)$$

