Practice with Examples

For use with pages 214–221

NAME

Determine the area of a triangle, evaluate determinants of 2×2 and 3×3 matrices, and use Cramer's Rule to solve systems of linear equations

Vocabulary

The **determinant** of a square matrix A is denoted by det A or |A|.

Cramer's Rule is a method of solving a system of linear equations using the determinants of the coefficient matrix of the linear system.

The entries in the **coefficient matrix** are the coefficients of the variables in the same order.

The area of a triangle with vertices (x_1, y_2) , (x_2, y_2) , and (x_3, y_3) is given by

Area =
$$\pm \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

where the symbol \pm indicates that the appropriate sign should be chosen to yield a positive value.

Determinant of a 2 × 2 Matrix

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{vmatrix} a \\ c \end{vmatrix} = ad - cb$$

The determinant of a 2×2 matrix is the difference of the products of the entries on the diagonals.

Determinant of a 3 × 3 Matrix

- 1. Repeat the first two columns to the right of the determinant.
- 2. Subtract the sum of the products of the entries on the diagonals going *up* from left to right from the sum of the products of the entries on the diagonals going *down* from left to right.

70

Name

Practice with Examples

For use with pages 214–221

EXAMPLE 1 The Area of a Triangle

Find the area of the triangle with the vertices A(-3, -1), B(2, 0), C(2, -4).

SOLUTION

Area =
$$\pm \frac{1}{2} \begin{vmatrix} -3 & -1 & 1 \\ 2 & 0 & 1 \\ 2 & -4 & 1 \end{vmatrix} \begin{vmatrix} -3 & -1 \\ 2 & 0 \\ 2 & -4 & 1 \end{vmatrix}$$
 Write the determinant, repeating the first two columns at the end.
= $\pm \frac{1}{2}([(-3) + (-2) + (-8)] - [2 + 12 + (-2)])$ Find the products of the diagonals.
= $\pm \frac{1}{2}[-13 - 12]$ Simplify.
= $\frac{25}{2}$ Multiply by $-\frac{1}{2}$ to get a positive value.

Exercises for Example 1

Find the area of the triangle with the given vertices.

1. A(2, 3), B(0, 5), C(-1, -2)**2.** A(0, 4), B(3, 5), C(-1, 4)

3.
$$A(-1, -2), B(2, 1), C(0, 3)$$

4. $A(1, 2), B(2, 6), C(3, 2)$

Date

71

NAME

Practice with Examples

For use with pages 214–221

Use Cramer's Rule to solve this system: 3x - 2y = 22x + 4y = -2

SOLUTION

$$\begin{vmatrix} 3 & -2 \\ 1 & 4 \end{vmatrix} = 12 - (-2) = 14$$
$$x = \frac{\begin{vmatrix} 22 & -2 \\ -2 & 4 \end{vmatrix}}{14} = \frac{88 - 4}{14} = 6$$

Evaluate the determinant of the coefficient matrix.

Since the determinant is not 0, apply Cramer's Rule.

.....

$$y = \frac{\begin{vmatrix} 3 & 22 \\ 1 & -2 \end{vmatrix}}{14} = \frac{-6 - 22}{14} = -2$$

The solution is (6, -2).

Check this solution in the original equations.

$$3x - 2y = 22 x + 4y = -2$$

$$3(6) - 2(-2) \stackrel{?}{=} 22 6 + 4(-2) \stackrel{?}{=} -2$$

$$22 = 22 -2 = -2$$

Exercises for Example 2

Use Cramer's Rule to solve the linear system.

5. $2x + y = 1$	6. $3x + 4y = 2$	7. $x + y = 5$
-x + y = 7	2x + y = 3	2x - y = 4

8.
$$6x - 3y = 39$$

 $5x + 9y = -25$
9. $3x - 2y = 8$
 $4x - 3y = 10$
10. $5x - 2y = -9$
 $-7x + 3y = 14$

72