10.1 Adding and Subtracting Polynomials

- Goals Add and subtract polynomials.
 - Use polynomials to model real-life situations.

VOCABULARY

Polynomial A polynomial is an expression which is the sum of terms of the form ax^k where k is a nonnegative integer.

Standard form When the terms of a polynomial are placed in descending order, from largest degree to smallest degree, the polynomial is said to be in standard form.

Degree The degree of each term of a polynomial is the exponent of the variable.

Degree of a polynomial The degree of a polynomial is the largest degree of its terms.

Leading coefficient The leading coefficient of a polynomial is the coefficient of the first term when the polynomial is written in standard form.

Monomial A monomial is a polynomial with only one term. Binomial A binomial is a polynomial with two terms. Trinomial A trinomial is a polynomial with three terms.

Example 1 Identifying Polynomial Coefficients

Identify the coefficients of $x + 3x^4 - 11x^3 - 9$.

Solution

First write the polynomial in standard form. Account for each degree, even if you must use a zero coefficient.

The coefficient of the x-term is 1 because $1 \cdot x = x$. $x + 3x^4$

> $x + 3x^4 - 11x^3 - 9 = 3x^4 + (-11)x^3 + 0x^2 + 1x + (-9)$

Answer The coefficients are 3, -11, 0, 1, and -9.

	Example 2 Classifying	Polynomia	nls	
	Polynomial	Degree	Classified by Degree	Classified by Number of Terms
	a. –3	0	constant	monomial
	b. -x + 1	1	linear	binomial
	c. x ² + 3	2	quadratic	binomial
	c. $x^2 + 3$ d. $5x^3 - 3x^2 + x - 8$ e. $-x^4 + 2x^3 + 3$	3	cubic	polynomial
	e. $-x^4 + 2x^3 + 3$	4	quartic	trinomial
or subtract the like terms. You can use a vertical format or a horizontal format.	Solution Write each expression in $x^5 - 3x^3 + 1$ $-2x^4 + 7x^3 + 1$ $x^5 - 2x^4 + 4x^3 + 2$	$\frac{11x^2 - 8x}{2x^2 + 8x^2}$	$\frac{1}{2} + 2$ $\frac{1}{2} - 3$	e terms.
	Example 4 Subtracting Polynomials			
	Find the difference. $(11x^4 + x^3 - x + 5) - (-x^4 - x^2 + 2x + 8)$			
When subtract- ng one polynomial rom another, don't orget to distribute he subtraction sign o each term of the olynomial that's heing subtracted.	Solution $11x^4 + x^3 - x + 5$ $-(-x^4 - x^2 + 2x + 8)$	·	$11x^4 + x^3$ $+ x^4$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

6

Checkpoint Find the sum or difference.

1.
$$(2x^6 - x^5 + 3x^3 - 14x^2 + 13) + (7x^5 - x^4 + 9x^3 + 13x^2 + 2)$$

 $2x^6 + 6x^5 - x^4 + 12x^3 - x^2 + 15$
2. $(-x^3 - 5x^2 + x - 1) - (-x^3 + 3x^2 + 10x - 9)$
 $-8x^2 - 9x + 8$

Example 5 Adding Polynomials

Population The resident populations, in thousands, of California and Nevada from 1995 through 2001 can be modeled by the following equations, where *x* is the number of years since 1990.

CA: $C = 4.8106x^4 - 155.662x^3 + 1855.45x^2 - 9171.3x + 47,623$

NV: $N = 0.8826x^4 - 27.659x^3 + 315.64x^2 - 1465.3x + 3924$

Find a model for the resident population *P* of California and Nevada combined for 1995 through 2001.

Solution

You can find a model *P* by adding the models *C* and *N*.

Answer The model for the resident population *P* of California and Nevada combined for 1995 through 2001 is

$$P = 5.6932x^4 - 183.321x^3 + 2171.09x^2 - 10,636.6x + 51,547.$$