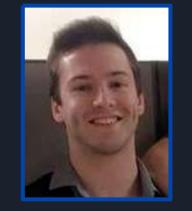


Post-Quantum Cryptography

for Modern Defense Security


Team Members

Erik Failing

Computer Science (Senior)

- Team Lead
- Cybersecurity SME
- Developer
- Researcher
- Interviewer

Cory Haralson

Computer Science (Senior)

- Quantum SME
 - Writer
 - Interviewer

Matthew Daigle Computer Science & Mathematics (Senior)

- Researcher
- Interviewer
- Writer
- Algorithm Testing

Angela Allison Computer Science (Senior)

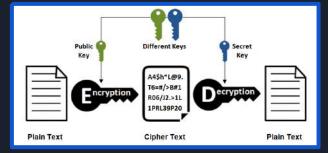
- Literature Review
 - Researcher
- Interviewer
- Writer

Sean Pagani

Computer Science (Senior)

- Literature Review
 - Researcher
 - Interviewer
 - Benchmarks

Quantum Computing


- Uses quantum mechanics to operate
 - O Can be exponentially faster than classic computers
 - O Use Qubits instead of bits
- Operation compared to classical computers
 - O Classical computers use bits
 - O Bits show information in 1's and 0's
 - 2 bit machine has 4 states
 - 00
 01
 10
 - 11
 - O 2 qubit machine can be in all 4 states at once

Cryptography

- Cryptography is the practice of securing communications
 - O It enables confidentiality, integrity, nonrepudiation, and authentication
 - O Ciphers are used to encrypt/decrypt messages
- Two Types:
 - O Single/Symmetric key encryption
 - O Public/Asymmetric key encryption (eg. RSA)
- Certain Asymmetric Cryptographic standards can broken by Quantum Computers
 - O Can solve some hard problems exponentially faster than classical computers

The Need for Post Quantum Encryption

Post-Quantum Attacks are around 20 - 30 years away.

however...

Changes to standards take a long time.

Attackers can start storing information now, for later.

Confidential Information has a long shelf life (20+ Years).

Our Challenge

Formal Problem Statement:

"Engineers within the Advanced Technology Program Executive Office require the ability to assess post-quantum cryptography algorithms in order to determine which could be employed to ensure data security for ballistic missile defense systems."

Original Hypotheses

- Initial Thought: A white paper analyzing quantum-safe encryption algorithms.
- Narrowing down algorithms to
 recommend the best Algorithm for
 Quantum Safe Encryption.
- Applicable to any organization with sensitive or classified information.

DEPLOYMENT

-A peer reviewed white paper analyzing promising PQC encryption algorithms.

BENEFICIARIES

- Cryptographers
- Cyber security analysts
- Network Specialists
- Cryptanalysts

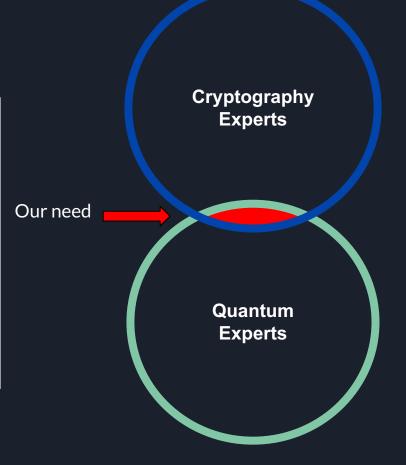
MMC Version 1

KEY PARTNERS	KEY ACTIVITIES-Research-Interview-Testing- Theoretical modelingin low performance andlimited environmentsKEY RESOURCES-Access to cutting edgePQC encryptionalgorithms-A subject matter expertin quantum computing	VALUE PROPOSITIONS -Our analysis will provide increased understanding of PQC algorithms and enable the efficient hardening of systems against near future quantum computers		BUY-IN & SUPPORT DEPLOYMENT -A peer reviewed white paper analyzing promising PQC encryption algorithms.	BENEFICIARIES - Cryptographers - Cyber security analysts - Network Specialists - Cryptanalysts
-Algorithms need to be al	ION BUDGET/COST ble to run in low size, weig vironments (e.g., a raspbe		MISSION ACHIEVEMENT/IMPACT FACTORS -Succinct analysis of a multitude of PQC encryption algorithms -Identification of which promising PQC encryption algorithms should be used in a given environment (ex: low resource vs. high resource)		

Where did we start?

- We decided to do a white paper and followed through
 - O We wanted to recommend the most secure algorithm
- Initial Idea: Layer two encryptions
 - O Since NIST competition won't finish until 2023/2024
- Information gathering
 - O What testing environments to use?
 - O Who should we interview to learn more?
 - O What resources are available to us?
 - O How do we choose a "best" algorithm to recommend?
 - O Is our initial idea on the right track?

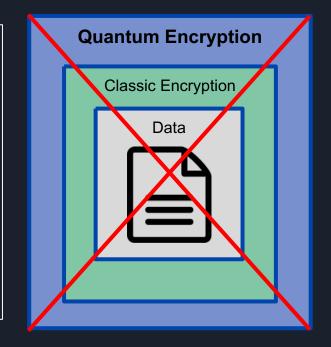
KEY ACTIVITIES


-Research

- -Interview
- -Testing
- Theoretical modeling in low performance and limited environments

The Interview Process

- 15 Interviews
 - 30 minutes to 3 hours in length
- Extended correspondence w/ an additional 8 experts over email
- Professionals in Cryptography and Quantum
 - Targeted people who knew both
 - Few are SMEs of both



First Pivot: No Encryption Layering

Cryptography experts refuted layering two encryptions

- Waste of resources
- Opens more vulnerabilities; side channel attacks
- Poor time efficiency
- NIST standards are very reliable, why layer?

New Focus: Recommend a promising encryption algorithm for each of a variety of environments

Second Pivot: Re-Evaluate Success

Shifted Focus to:

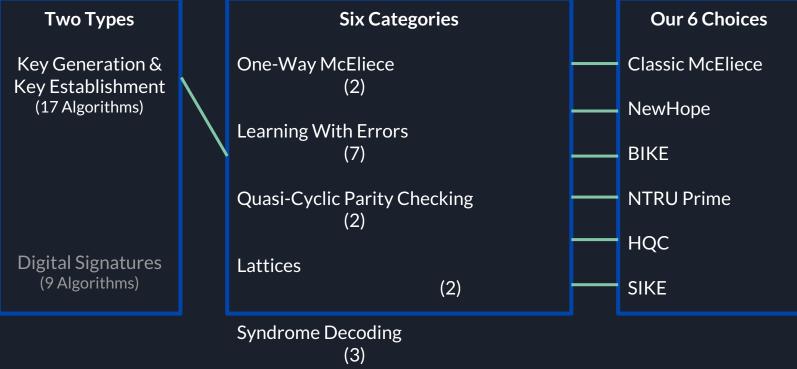
- Raising awareness about the reality of quantum attacks
- Providing analysis of known Quantum Safe encryption algorithms
- Showing that the new quantum-safe algorithms could match up to our current standards

MISSION ACHIEVEMENT/IMPACT FACTORS

-Succinct analysis of a multitude of PQC encryption algorithms

-Identification of which promising PQC encryption algorithms should be used in a given environment (ex: low resource vs. high resource)

MISSION ACHIEVEMENT/IMPACT FACTORS


- Reasonable timelining of quantum computing advancement
 Analysis of specific quantum-safe PKE algorithms based on operating environment conditions, established via theoretical analysis and concrete tests
- Provide awareness to the MDA about implementable quantum-safe solutions without the use of quantum computers

Before

Third Pivot: Reducing Scope

Further Reduction

6 Choices \rightarrow 3 Choices

X Classic McEliece

✓ NewHope

X BIKE

✓ NTRU Prime

XHQC

✓ SIKE

Missing a header file which could not be sourced

Used inline assembly, not compatible with ARM architecture

AVX2 Instructions: cannot run on ARM processors

MMC Version 10

KEY PARTNERS	KEY ACTIVITIES	VALUE PRO	POSITIONS	BUY-IN & SUPPORT	BENEFICIARIES
- Strategic Alliances:	 -Researching & Interviewing -Testing PKE algorithms in various environments - Analyzing PKE algorithms - Time-lining quantum computing advancement - Analyzing impact of a quantum attack on MDA's Secure Systems 	 Provide incre understanding safe PKE algori the DoD to ma informed impli decisions. Assist in depl quantum-safe 	of quantum- ithms to allow ke a well- ementation oyment of	 Wait for MDA to release a version of our paper suitable for the public before we post it anywhere. Post whitepaper to arxiv.org Present/Deliver paper to the MDA and the Advanced Technology Program Executive Office 	-Cyber Security Analysts -Cryptanalysts -Information Systems Security Managers -Information Security Officers -Security Architects -Telemetry Engineers - Crypto Researchers
- Suppliers:	KEY RESOURCES -PKE C code implementations of Classic McEliece, NTRU Prime, SIKE, NewHope, BIKE & HQC -Testing Environments: Raspberry Pi 3 (Cortex-A53 Processor), Cortex M4 on STM discovery board, Computer with Haswell Processor, FPGA, RTOS - Interviews with Professionals in cryptography, quantum computing, and those in the MDA	algorithms in a environments performance in - Enable harde systems throug resistant algor preserve classi information fro computing atta	to prevent mpacts. ning of gh quantum ithms to fied om quantum	DEPLOYMENT -A white paper containing the following: Executive Summary, Introduction, Literature Review, Research Methodology, Findings, Analysis & Discussion, Recommendations and References	
MISSION BUDGET/COST - Algorithms need to be able to run in low size, weight, power, and limited bandwidth environments - Raspberry Pi (3B+/4) - Mission must be accomplished by April 30, 2020			MISSION ACHIEVEMENT/IMPACT FACTORS - Reasonable timelining of quantum computing advancement - Analysis of specific quantum-safe PKE algorithms based on operating environment conditions, established via theoretical analysis and concrete tests - Provide awareness to the MDA about implementable quantum-safe solutions without the use of quantum computers		

Lessons Learned

- Quantum computing is not a matter of IF but a matter of WHEN; we must be prepared for their potential
- Since attackers can save encrypted data, quantumsafe encryption is needed right now
- It's important to be aware of growing technologies even if they're decades away

Our Next Steps

- Continue tests on the 23 other Round 2 NIST candidates
- Obtain and test on a larger variety of platforms
- Conduct further research into figuring out ways to improve the algorithms
- Continue meeting with professionals to gain a better understanding of the subject
- Continue expanding upon current white paper

Where the team is headed

Matthew Daigle - Graduating and continuing to a Master's in Computer Science. Willing to pursue this analysis further.

Erik Failing - Open to pursuing H4D project further - Cybersecurity Engineer - B.S CS late 2020 - A.S CISSP early 2021 - OSCP mid 2021 - M.S Cybersecurity 2023.

Cory Haralson - Posed to graduate with a Bachelors in Computer Science and start work. Will pursue more degrees in CS and Physics. Will not be continuing work on H4D.

Angela Allison - Graduating Senior with a B.S. in Computer Science and will be working as a Software Developer. Will not continue working on H4D project.

Sean Pagani- Senior Computer Science Student and will work in a related field. Will not continue working on H4D project.

