

Combines the performance of plastics with environmental sustainability.

P&G's Nodax™

Biodegradable thermoplastics from renewable resources

NodaxTM Project

Overall Objective

Produce a novel and functional polymer from a renewable resource that is competitive with conventional petroleum-based polymers in price, and offers improved end-use properties.

Approach

Thermoplastic aliphatic polyester (*Nodax[™]*) production in microorganisms or agricultural crops to achieve price and volume objectives.

Commercialization

- Broadly license and transfer R&D for production of neat polymer, resins and forms.
- Create demand by internal use and broad licensing of other end users.
- Cooperate and collaborate with other companies to capitalize on synergies with other bioplastics to grow entire market.

NodaxTM - P&G Bioplastics

Materials Properties

- Comparable to high-grade polyethylene
 - Strength, flexibility, toughness
- Additional beneficial characteristics of polyesters
 - Dyeability, printability, compatibility, etc.
- Gas Barrier properties combined with heat sealability
- Hard springy elasticity upon stretching
- Chemically digestibility in hot alkaline solutions

Additional Features

- Produced from renewable resources
- Fully biodegradable and compostable
- Novel and proprietary materials

Estimated Cost

- \$ 1.00 \$ 2.50/kg. (Target)
- Competitive with high-end commodity plastics

Historical Background

Issues

- P&G's detergent phosphate experience1970 ~
- Increasing solid Waste concerns1980 ~
 - Are we running out of landfills?
 - Plastic packages, diapers and other disposable products

Technical Approach

- Biodegradable/compostable plastics1990 ~
 - Disintegration to pieces
 - Mineralization to CO₂, CH₄, and H₂O

Specific Actions

- Quick fix with available materials
 - Starch-based resins
 - Cellulose derivatives
- Long-term solution
 - Next generation degradable polymers
 - Major technical discontinuity

Polyhydroxyalkanoates (PHAs)

- · Semicrystalline, biodegradable, thermoplastic polyester
- Produced (up to now) by microorganisms

Schematic representation of Ralstonia eutropha containing PHB granules (white fractions)

ntaining	РНА	R
actions/	PHB	-CH ₃
	PHV	-CH2CH3
	PHBV (Biopol [™])	-CH ₃ and -CH ₂ CH ₃
	PHBHx (Kaneka)	-CH3 and -CH2CH2CH3
Nodax [™] family	PHBO	-CH3 and -(CH2)4CH3
	PHBOd etc.	-CH ₃ and -(CH ₂) ₁₄ CH ₃

Properties of Conventional PHAs

Biopol™

- Commercial PHA from Metabolix
- Bacterial fermentation of sugar

Advantages

- Produced from renewable resources
- Biodegradable (compostable)
- Thermoplastic
- Moisture resistant

Limitations

- Cost\$5 ~ \$8/lb?
- SupplyLimited production scale
- PollutionBiomass disposal
- End-use propertiesHard, brittle, weak, unstable
- ProcessabilityHigh Tm, poor thermal stability Low extensional viscosity Slow crystallization rate

Linear PHB

Branched PHB (Nodax[™])

Molecular design analogous to soft polyethylene

- Disruption of crystals by chain defects
- Enhanced molecular entanglement

Benefits

Processability

Lower T_m Higher melt viscosity

- End-use properties Lower crystallinity Lower T_a
- Proprietary structure

Process temperature, degradation Extrusion blowing

Flexible, tough, ductile Soft, drapable

NMR Spectrum of Nodax[™] Produced by Pseudomonas sp. 61-3

Fig. 2 125-MHz ¹⁰C-NMR spectrum of P(51% 3HB-co-3HA) produced by recombinant *R. eutropha* PHB 4 harboring pJKSe46-pha from tetradecanoate. 3HB, 3-hydroxybutyrate; 3HHs, 3-hydroxybutyrate; 3HD, 3-hydroxybutyrate; 3HD, 3-hydroxydodecanoate. 3HA denotes 3-hydroxyalkanoaten from C6 to C12

H. Matsusaki, H. Abe, K. Taguchi, T. Fukui, and Y. Doi Appl. Microbiol. Biotechnol. 53, 401-409 (2000).

PHA Copolymer Compositions

Literature **Metabolix** Literature Literature **Metabolix** Kaneka P&G P&G P&G P&G P&G P&G

P&G claimed the use of C4C6 in films, fibers, nonwovens, hygiene products, etc.

C4's level is at least 50%

P&G also claimed all PHA opolymers with 5 components and above

- Homopolymers
- Di-copolymers
- Tri-copolymers
 Tetra-copolymers

Properties of NodaxTM

Biological Properties

- To be made from renewable resources
- Biodegradable aerobic, anaerobic

Thermo-mechanical Properties

- Similar to polyethylene, polypropylene
- Versatility films, fiber, elastomers, etc.
- Exhibit hard (springy) elasticity

Physico-chemical Properties

- Affinity/compatibility with certain materials
- Higher surface energy printing, adhesion
- Hot alkali digestibility
- Barrier properties
- UV resistance, high density, etc.

Biodegradable Summary

<u>Aerobically Degradable:</u> Compost, surface exposure

• 78% / 45 days via intensive aerobic compost simulation.

Anaerobically Degradable: Septic, sediment, marine

- Good in simulated landfill conditions. Same rate or better than reference materials like yard waste, various papers.
- Good in septic systems. Disintegration in 7 days in model system.
- Slower in marine conditions. 40% / 40 days. Reference material was 55% / 15 days.

Mineralization of NodaxTM

Mineralization of NodaxTM

Anaerobic Digester Sludge

Thermal Properties

Melting

- C_2 branches (PHBV) do not affect T_m much
- $C_{\geq 3}$ branches (NodaxTM) depresses T_m
- Branch size above $C_{\geq 3}$ has less effect on T_m lowering efficacy

Crystallinity

- C₂ branches has little effect on total crystallinity
- Nodax[™] has the same crystal structure as PHB
- $C_{\geq 3}$ branches depresses crystallinity
- Larger branches depresses crystallinity
- Higher branch content slows down crystallization rate

Glass Transition

- Higher branch content depresses T_g
- Larger branches depresses T_g

Melt Temperature

Mechanical Properties

Young's Modulus (Stiffness)

- Content and size of branches reduce modulus
- Between HDPE and LDPE
- Molecular weight has little effect
- Aging slightly increases modulus

Yield Stress

- Content and size of branches reduce yield stress
- Between HDPE and LDPE
- Molecular weight has little effect

Toughness and Ultimate Elongation

- Molecular weight has profound effect (preferably > 600K)
- Size of branches improves both

Comparable to high-grade PE

Tensile Properties

Tensile data after 7 days

Interactions with Other Materials

Bulk Phase Properties

- Solubility "green" non-CFC solvents (acetone, ethyl acetate, etc.)
- Compatibility plasticizers, antioxidants, processing aids
- Blendability, miscibility
- Dyeability
- Moisture and grease resistance
- Barrier O₂, CO₂, odor

Surface Properties

- Adhesion
- Dispersibility
- Wettability
- Printability

PLA vs. PHA (Nodax[™])

Polylactic acid

Physical Properties

- Often amorphous
- Transparent
- Brittle, hard, and stiff
- Use temperature < 60° C

Degradation Mechanisms

- Hydrolytic attack
- Not directly biodegradable
- Temperature, pH, and moisture effect
- Spontaneous degradation Processability
- Quick quench
- Fiber spinning

Polyhydroxyalkanoates

- Semicrystalline
- Tough, ductile and drapable
- Usually opaque
- Use temperature < 120° C
- Enzymatic digestion
- Rapid biotic degradation
- Aerobic or anaerobic conditions
- Relatively stable in ambient
- Slow crystallization
- Films, fibers

Dyeability

Dyeability test

- Immersion of films in aqueous dispersion of nonionic dye

Ink-jet Printability of Nodax Paper

100% Nodax pulp

Mixed furnish (90% Nodax : 10% NSK)

Heat Sealability

PHB-A (neat) are slow to crystallize. Typically order of minutes.
Nucleation package needed for processing. Typically reduces time to crystallize to order of few seconds.

 Still heat sealable under appropriate conditions even without nucleation package.

·Can be sealed via dielectric heating.

Gas Permeability of Films

Transmission Rate

PolymerMoistureO₂

Saran 1	10		
Nodax™	9040		
PET	5060		
Polypropylene	10	2300	
Polyethylene	20	7000	
Bionolle 3	00		
Natural rubber	1000	24000	
Cellulose aceta	te 3000	1000	
Margin of error	0.5x - 2x		
For most polym	ners, CO ₂ perr	neability is ~5x O₂ perme	ability

Chemical Digestibility

Alkaline Digestion

- Hot alkaline solutions attack bioplastics
 - Caustic solution, e.g., Cascade
- Rapid disintegration to particulate
- Degradation to water-solubles (monomer, oligomer)
- Full biodegradation of digested products

Implications

- Flushable after digestion
- Household digestion possible
- Institutional uses:
 - Fast-food restaurants, hospitals, marine transportation, military use
- Specialty uses:
 - Electronic circuit board, mold release, etc.

Key Attributes of NodaxTM

- Excellent barrier for odor, oxygen, CO2, and moisture
- Impervious to grease, water, and other liquids
- Heat-sealable, thermally processable
- Good PE-like mechanical properties
- Alkali digestible (e.g., with Cascade solution)
- Dyeable and printable
- Compatible with various additives and fillers
- Made into laminated paper, layered plastic sheets, nonwovens, etc.
- Blendable with many other polymers
- Low cost, when made by crop plants
- Available from renewable resources
- Biodegradable, compostable

Conversion to Formed Articles

- Films and sheets
- Molded articles
- Fibers
- Elastics
- Laminates and coated articles
- Nonwoven fabrics
- Synthetic paper products
- Foams

Protoypes of NodaxTM Products

Compression molded container

Micro-extrusion molded cylinders

Syringe machined from two molded cylinder

Self-sealing thermotorm pac

Thermoformed disposable pill cup

Thermoformed disposable container

Paper Laminates/Coatings

- Shows good adhesion to paper, cellulosics
- Water/grease barrier
- Heat sealable
- More flexible and crack resistant than PHB/PHBV

- Repulpable
- Navy Drinking Cup Application:

Heat sealing rate sufficient for drinking cups to be processed at production speeds

- Extrusion coating rheology is acceptable
- Crystallization rate of neat material needs to be adjusted

Clam-shell containers made of Nodax[™] foam

Nodax bicomponent fiber

Combines the performance of plastics with environmental sustainability.