LESSON 4.1 Assignment

Name _

Date ___

Shape and Structure Forms of Quadratic Functions

- **1.** Analyze the graph of the quadratic function.
 - **a.** The standard form of a quadratic function is $f(x) = ax^2 + bx + c$. What possible values can *a* and *c* have for the given quadratic function? Explain your reasoning.
- **b.** The vertex form of a quadratic function is $f(x) = a(x h)^2 + k$. What possible values can *a*, *h*, and *k* have for the given quadratic function? Explain your reasoning.

c. The factored form of a quadratic function is $f(x) = a(x - r_1)(x - r_2)$. What possible values can a, r_1 , and r_2 have? Explain your reasoning.

2. Write a quadratic function for the parabola that passes through the point (2, -3) with roots (-6, 0) and (4, 0).

Carnegie Learning

- **3.** Mitzu shoots an arrow from an initial height of 2 meters. The arrow reaches its maximum height of 20 meters after it has flown a distance of 60 meters.
 - **a.** Write a quadratic function to represent the height of the arrow as a function of its distance.

b. Determine the height of the arrow after it has flown a distance of 100 meters.

- **4.** Charlie kicks a soccer ball from the ground through a hoop that is 80 feet away at a height of 20 feet. The ball hits the ground 100 feet from where Charlie kicked it.
 - a. Write a quadratic function to represent the height of the ball as a function of its distance.

b. Determine the maximum height of the ball during its flight.

LESSON 4.2 Assignment

Name ____

_ Date _____

Function Sense Translating Functions

1. Graph $d(x) = (x + 3)^2 - 1$ without a calculator. Explain each of your steps.

2. Graph $g(x) = (x - 5)^2 - 4$ without a calculator. Explain each of your steps.

3. The function h(x) is shown. If $f(x) = x^2$, write h(x) in terms of f(x).

4. The function p(x) is shown. If $f(x) = x^2$, write p(x) in terms of f(x).

5. The function t(x) is a translation of $f(x) = x^2$, and t(x) has a vertex at (25, -9). Write the function t(x). Explain your reasoning.

LESSON 4.3 Assignment

Name ___

Date _____

Up and Down Vertical Dilations of Quadratic Functions

1. Graph $d(x) = -\frac{1}{2}(x + 5)^2 - 3$ without a calculator. Explain each of your steps.

2. Graph $g(x) = 3(x - 2)^2 - 6$ without a calculator. Explain each of your steps.

3. Write the function h(x) that represents the given graph. Explain your reasoning.

4. Write the function p(x) that represents the given graph. Explain your reasoning.

5. The function t(x) is a transformation of $f(x) = x^2$. The function t(x) has a vertex at (-12, 15) and has been vertically compressed by a factor of $\frac{1}{4}$. Write the function t(x). Explain your reasoning.

LESSON 4.4 Assignment

Name ___

Date _____

Side to Side Horizontal Dilations of Quadratic Functions

1. Graph $m(x) = \left(\frac{1}{2}x + 3\right)^2 + 2$ without a calculator. Explain each of your steps.

2. Write the function p(x) that represents the given graph. Explain your reasoning.

3. Graph $g(x) = (2x - 8)^2 - 4$ without a calculator. Explain each of your steps.

4. The graph of the quadratic function t(x) is shown. If $f(x) = x^2$, write t(x) in terms of f(x). Explain your reasoning.

LESSON 4.5 Assignment

Name ____

_ Date ___

What's the Point? Deriving Quadratic Functions

1. Use your knowledge of reference points to write an equation for the quadratic function that has *x*-intercepts at (-1, 0) and (1, 0) and a *y*-intercept at (0, -3).

2. Use your knowledge of reference points to write an equation for the quadratic function that has a vertex at (4, -3) and passes through (6, -1).

3. Use your knowledge of reference points to write an equation for the quadratic function that has one *x*-intercept at (-7, 0) and passes through (-4, -18).

Chapter 4 Assignments **53**

4. Create a system of equations and use algebra to write a quadratic function that passes through the points (-2, 8), (1, 14), and (0, 10).

- **5.** Victoria competes in a discus throwing competition. She needs to throw her discus at least 200 feet to win the event. The discus has an initial height of 5 feet when she releases it. The discus reaches a height of 25 feet after traveling 75 feet and a height of 20 feet after traveling 150 feet.
 - **a.** Write a quadratic function to model the height of the discus as a function of the distance traveled.
 - b. Does Victoria win the competition? Explain your reasoning.
 - c. What was the maximum height of the discus?

page 2

Name ____

_ Date ____

Now It's Getting Complex . . . But It's Really Not Difficult! Complex Number Operations

1. Calculate each power of *i*.

a. *i*⁴⁴

b. *i*⁴⁰⁰³

c. *i*⁷³⁰

d. *i*⁻²⁰

- 2. Simplify each expression. Identify the real and imaginary parts of your answer.
 - **a.** √−18

b.
$$\frac{\sqrt{-72}-2}{6}$$

a. -7 + 3i + x = 10 - 2i

b.
$$\frac{x}{5+4i} = -2 - i$$

4. Multiply each number by its complex conjugate. Identify the real and imaginary parts of your answer. **a.** 4 - 6i

5. Simplify the expression (3 + i)(2 + 4i)(3 - i)(2 - 4i). Identify the real and imaginary parts of your answer.

LESSON 4.7 Assignment

Name ____

Date _

You Can't Spell "Fundamental Theorem of Algebra" without F-U-N! Quadratics and Complex Numbers

- **1.** The Internet Bargains Company models their profit during different 20-day periods throughout the year. The function p(x) represents the daily profit (in thousands of dollars) on the *x*th day of each period. When p(x) > 0, the company has a daily profit. When p(x) < 0, the company has a daily loss.
 - **a.** The model for one 20-day period is $p(x) = 0.04(x 10)^2 + 2$. Determine which of the days in the 20-day period the company made a profit without using a calculator. Explain your reasoning.

b. The model for one 20-day period is p(x) = -0.1(x - 3)(x - 15). Determine which of the days in the 20-day period the company made a profit without using a calculator. Explain your reasoning.

c. The model for one 20-day period is $p(x) = -0.06(x - 9)^2$. Determine which of the days in the 20-day period the company made a profit without using a calculator. Explain your reasoning.

2. Determine the number of roots for each given equation and whether the roots are real or imaginary. a. $0 = 9x^2 - 6x + 1$ **b.** $0 = 2x^2 + 9x + 10$

c. $0 = x^2 - 3x + 5$

- $\ensuremath{\textbf{3.}}$ Write a quadratic equation in standard form with the given roots.
 - **a.** Write a quadratic equation with a double root of -5.

b. Write a quadratic equation with a root of -3 + 2i.