Lesson 5 I May Be Irrational, But You're Imaginary

i and multiples of i are called **imaginary numbers**. Imaginary numbers can be added to real numbers to form **complex numbers**. Complex numbers are written as a + bi, where a and b are both real numbers.

1. Do these addition and subtraction problems. The answers may be complex numbers.

a.
$$(13+2i)+(-12-5i)$$

$$1 - 3i$$

b.
$$(-7+12i)+(3-6i)$$

c.
$$(8-i)-(7-3i)$$

d.
$$(-9+4i)-(9-4i)$$

2. Do these multiplication problems. Remember how to multiply binomials?

a.
$$(-4+2i)(3-5i)$$

b.
$$(10-3i)(4-6i)$$

$$(1+3i)(1-3i)$$

d.
$$(3+5i)(3-5i)$$

3. Now that you know about complex numbers, solve the following quadratic equations.

a.
$$x^2 + 4x + 5 = 0$$

$$a=1$$
 $b=4$ $c=5$

$$x = \frac{-4 \pm \sqrt{4^2 - 4 \cdot 1.5}}{2 \cdot 1}$$

$$=-\frac{4+\sqrt{16-20}}{2}$$

$$=-\frac{4\pm 2i}{2}=-2\pm i$$

b.
$$x^2 - 3x + 4 = 0$$

$$x = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 1 \cdot 4}}{2 \cdot 1}$$

$$=\frac{3\pm\sqrt{9-16}}{2}$$

$$=3\pm\sqrt{-7}$$

$$=(\frac{3}{2}+\frac{17}{2})$$

4. Using your answers to #4, write the following quadratic functions in factored form. Then multiply the factored forms out to confirm that they have the correct standard form.

a.
$$f(x) = x^2 + 4x + 5$$

$$f(x) = (x - (-2+i))(x - (-2-i))$$
or
$$f(x) = (x + 2-i)(x + 2+i)$$

$$\Gamma(x) = (x + 2\tau i)(x + 2\tau i)$$

1000	-	
X	2	-6
x ²	2×	-i×
2×	4	-2i
ix	2i	+1
	\times \times^2 $2\times$ $i\times$	2× 4

b.
$$g(x) = x^2 - 3x + 4$$

$$g(x) = x - 3x + 4$$

$$g(x) = (x - (\frac{3}{2} + \frac{7}{2}i))(x - (\frac{3}{2} - \frac{7}{2}i))$$
or
$$g(x) = (x - \frac{3}{2} - \frac{7}{2}i)(x - \frac{3}{2} + \frac{7}{2}i)$$

$$\chi^{2} - \frac{3}{2} \times -\frac{3}{2} \times +\frac{9}{4} + \frac{7}{4} = \chi^{2} - 3\chi + \frac{16}{4}$$

of $a + bi$ is $a - bi$. $= \chi^{2} - 3\chi + 4$.

Every complex number has a **complex conjugate**. The conjugate of a + bi is a - bi.

5. Write the conjugate for each complex number:

a.
$$4+6i$$
 4-6i

c.
$$4.5 + 7.2i$$
 4.5 - 7.2i

b. 3+2i 3-2 i

d.
$$-3-9i - 3+9i$$

f.
$$4 + 8i$$
 $4 - 8i$

6. Multiply each number by its conjugate.

a.
$$4 + 6i$$

c.
$$4.5 + 7.2i$$

e.
$$4 - 8i$$

$$\begin{array}{c|cccc}
4 & -8i \\
4 & 16 & -32i \\
8i & 32i & -64i \\
\end{array} = 80$$

b.
$$3 + 2i$$

$$\frac{3}{9} = \frac{3}{6i} = \frac{3}{3}$$

d.
$$-3 - 9i$$

f.
$$4 + 8i$$

$$\begin{array}{c|cccc}
4 & 8i \\
4 & 16 & 32i \\
-8i & -32i & -64-1
\end{array} = 80$$