Name:

Lesson 4.5: Odds and Events

Prologue: A fun note on function notation:

Recall: The expression $f(\star)$ means the value of the function f when you plug in \star .

Problem. For $f(x) = x^2 + 3$, find f(-2), f(17), f(x + 1), and f(-x).

Act 1: Exploring and Investigating

Based on the following examples, come up with a definition of an **even function**. Write your definitions on the whiteboard.

Based on the following examples, come up with a definition of an **odd function**. Write your definitions on the whiteboard.

these functions are odd	these functions are not odd
$f(x) = x^3$	$g(x) = \log_2(x)$
20 y 10 x -4 -2 0 2 4 -0 2 4 -0 20 x -0 2 4	-10 Y X 0 2 4 6 8 -10 -20 -20 -20 -20 -20 -20 -20 -20 -20 -2

Act 2: Thinking

Problem (1). Let f(x) be an even function, and let f(2) = 14. Find f(-2).

Problem (2). Let g(x) be an odd function, with g(3) = -1.5. For what value of x will g(x) = 1.5?

Problem (3). For what values of n is $f(x) = x^n$ an even function? For what values is it odd? Explain why.

Problem (4). Let f(x) be an odd function. Find f(0).

Problem (5). Find a function which is both odd and even.

Problem (6). Algebraically prove that $f(x) = 2^x + 2^{-x}$ is an even function. That is, show that f(x) = f(-x), aka explain why $2^x + 2^{-x} = 2^{(-x)} + 2^{-(-x)}$.

Problem (7). Algebraically prove that $g(x) = 2^x - 2^{-x}$ is an odd function.

Problem (8). Is the set of even functions closed under addition? Either explain why or give a counterexample.

Problem (9). Is the set of odd functions closed under multiplication? Either explain why or give a counterexample.

Exit Ticket!

Problem. Let f(x) be an odd function. Half of the graph is drawn below. Graph the rest of the function.

Problem. Algebraically show that $f(x) = x^4 - x^2 + 1$ is an even function.

Exit Ticket!

Problem. Let f(x) be an odd function. Half of the graph is drawn below. Graph the rest of the function.

Problem. Algebraically show that $f(x) = x^4 - x^2 + 1$ is an even function.