Review for M2 10.1 + 10.2

OPEN UP HS MATH: MATH II

NAME DATE PERIOD
LESSON 4

Go

12. Complete the table and find the conditional probabilities, then interpret the data and probabilities to respond to the problem.

	Biking	Swimming	Total
10th Grade	50	50	176-76
11th Grade	35	76-35	76
Total	85	50+41 91	85191

 $P(10\text{th}|\text{Biking}) = \frac{50}{85} \approx 59\%$

 $P(\text{Swimming}|11\text{th}) = \frac{41}{26} \approx 5475$

Are the 11th grade students more into biking or swimming?

it's close, but swimming is more popular, with 41 votes vs. 35 votes for biking

NAME DATE PERIOD

13. Complete the table about preferred genre of reading and dessert preference. Find the conditional probabilities, then interpret the data and probabilities to respond to the problem.

	Ice Cream	Cake	Total
Teen	75	20	95
Adult	10	50	60
Total	85	70	155

$$P(\text{Teen}|\text{Cake}) = \frac{20}{70} \approx 0.29$$

 $P(\text{Adult or Ice Cream}) = \frac{135}{155} \approx 0.87$

Who prefers eating ice cream most, adults or teens?

NAME DATE PERIOD

14. Fill in the missing values for the frequency table containing data from a sample of adults. The table shows voting turnout and household income for a recent election. Find the indicated probabilities, then interpret the data and probabilities to respond to the

	Voted	Didn't Vote	Total
Income Over \$67,500	340	70	410
Income Under \$67,500	244	186	430
Total	584	256	840

 $P(\text{Voted}|\text{Income Over $67,500}) = \frac{340}{410} \approx 0.829$

 $P(\text{Voted and Income Under $67,500}) = \frac{244}{840} \approx 0.29$

 $P(\text{Didn't Vote or Income Under $67,500}) = \frac{500}{840} \approx 0.595$

Based on the sample of data, are all income levels participating in the election equally?

No, about 8370 of the higher mcome bracket voted, but only about $\frac{249}{430}$ ≈ 5790 of the lower income bracket voted.

PERIOD

NAME DATE

Quick Quiz 1: Lessons 1-4

575 +425,000

 Data was collected from students about whether they had a driver's license and/or access to a car.

Use the data shown in the table to find the probabilities in a-e.

- **a.** Probability a student has a license. $P(\text{license}) = \frac{575}{1000} = 57.5\%$
- **b.** Probability a student has a car. $P(\text{car}) = \frac{215 + 85}{1000} = \frac{300}{1000} = 30\%$
- c. Probability of having a license or a car. $P(\text{license or car}) = \frac{575 + 85}{1000} = 667$
- **d.** Probability of a student having a car, given that they have a license. $P(\text{car}|\text{license}) = \frac{215}{575} \approx 37\%$
- e. Probability of having a license and a car. P (license and car) = $\frac{215}{1000}$ = 21,5%
- 2. Use the data in problem 1 to make a two-way frequency table and use it to find the probability that a student will have a license, given that they have access to a car. Give a reason why this probability is reasonable.

	car	no car	total
license.	215	360	575
no license	85	340	425
total	300	700	1000

P(License | Car) = 215 × 7290

This is a high probability. Why would you have access to a car if you didn't have a license?