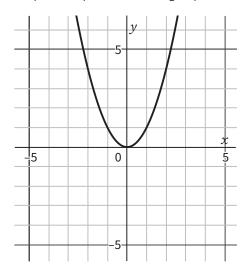
PERIOD NAME DATE

Lesson 1: Function Family Reunion

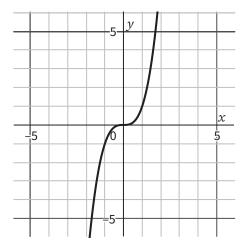

Ready, Set, Go

Ready

Graph the equations on the corresponding grid.

- **1.** The graph of $y = x^2$ is shown.
 - a. Graph the equations on the grid provided.

a.
$$y_1=x^2-2$$


b.
$$y_2 = (x-2)^2$$

c. $y_3 = 2x^2$

c.
$$y_3=2x^2$$

b. For each new equation, explain what the number 2 does to the graph of $y=x^2$. Identify what changes in the graph and what stays the same. Pay attention to the y-intercept, the x-intercept(s), and the rate of change.

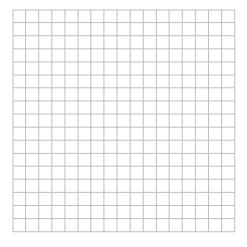
NAME PERIOD DATE

- **2.** The graph of $y = x^3$ is shown.
 - **a.** Graph the equations on the grid provided.

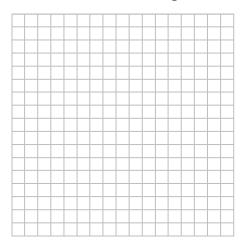
a.
$$y_1 = x^3 + 3$$

b.
$$y_2 = (x+3)^3$$

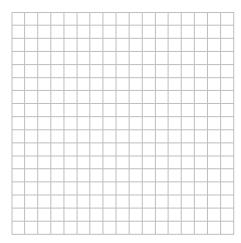
c. $y_3 = 3x^3$


c.
$$y_3 = 3x^3$$

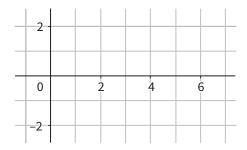
b. For each new equation, explain what the number 3 does to the graph of $y=x^3$. Identify what changes in the graph and what stays the same. Pay attention to the y-intercept, the x-intercept(s), and the rate of change.



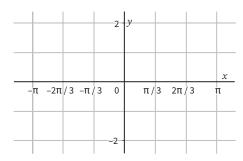
Sketch the graph of the parent function and the graph of the transformed function on the same set of axes.


3.
$$h\left(x\right)=2^{x}$$
, and $j\left(x\right)=2^{-x}$

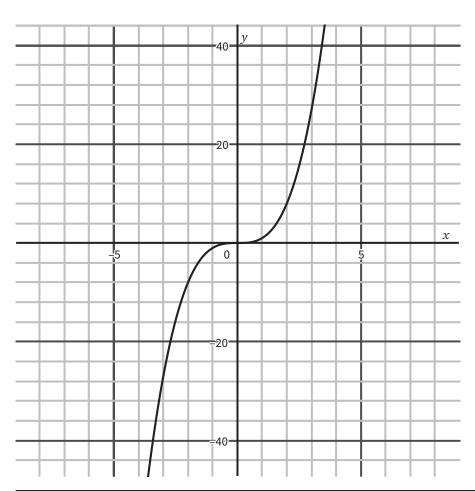
4.
$$r\left(x
ight)=x^{2}$$
 , and $s\left(x
ight)=-rac{1}{2}x^{2}+5$



5.
$$v\left(x\right)=\frac{1}{x}$$
, and $w\left(x\right)=-\frac{1}{x}$


6. $k(x) = \log(x)$,

and $m\left(x\right) = -1 + \log\left(x\right)$


7. $p(x) = \sin(x)$,

and $q(x) = 2\sin\left(x + \frac{\pi}{3}\right)$

8. Use the graph and the table to write the rule for each of the different transformations of the parent graph represented in the columns labeled image 1 and image 2. Write the transformation rule as a geometric transformation of the original image, using the set of coordinate points, and then write the rule using algebraic function notation. Graph image 1 and image 2 on the same set of axes. (It's possible that not all of the transformed points will fit on the given set of axes.)

Graph of parent function: $f\left(x\right)=x^{3}$

	pre-image (parent function)	image 1	image 2
geometric notation	(x,y)	(x,y) ightarrow (x,y)	(x,y) ightarrow (
function notation	$f\left(x\right) =x^{3}$	$f_{1}\left(x ight) =\underline{\qquad }$	$f_{2}\left(x ight) =$
	(-2, -8)	(-2, -3)	(-4, -8)
selected points that fit this image	(-1, -1)	(-1,4)	(-3, 1)
	(0,0)	(0,5)	(-2,0)
	(1,1)	(1,6)	(-1, -1)
	(2,8)	(2, 13)	(0, -8)

Go

Find the function values: f(-2), f(0), and f(3). Indicate if the function is undefined for a given value of x.

9.
$$f(x) = |x+5|$$

a.
$$f(-2) =$$

b.
$$f(0) =$$

c.
$$f(3) =$$

10.
$$f(x) = |x-2|$$

a.
$$f(-2) =$$

b.
$$f(0) =$$

c.
$$f(3) =$$

11.
$$f(x) = x|x|$$

a.
$$f(-2) =$$

b.
$$f(0) =$$

c.
$$f(3) =$$

12.
$$f(x) = 3^x$$

a.
$$f(-2)=$$

b.
$$f(0) =$$

c.
$$f(3) =$$

13.
$$f(x) = 3^{x+2}$$

a.
$$f(-2) =$$

b.
$$f(0) =$$

c.
$$f(3) =$$

14.
$$f(x) = (3^x) + x$$

a.
$$f(-2) =$$

b.
$$f(0) =$$

c.
$$f(3) =$$

15.
$$f(x) = \frac{x}{x}$$

a.
$$f(-2) =$$

b.
$$f(0) =$$

c.
$$f(3) =$$

16.
$$f(x) = \frac{x}{(x-4)}$$

a.
$$f(-2) =$$

b.
$$f(0) =$$

c.
$$f(3) =$$

17.
$$f(x) = \frac{x}{(x+2)} - 5$$

a.
$$f(-2) =$$

b.
$$f(0) =$$

c.
$$f(3) =$$

18.
$$f(x) = \log_3 x$$

a.
$$f(-2) =$$

b.
$$f(0) =$$

c.
$$f(3) =$$

19.
$$f(x) = \log_7(7)^x$$

a.
$$f(-2) =$$

b.
$$f(0) =$$

c.
$$f(3) =$$

20.
$$f(x) = x \log_{10} 1,000$$

a.
$$f(-2) =$$

b.
$$f(0) =$$

c.
$$f(3) =$$