CIS 700:
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Slides at http://grigory.us/big-data-class.html
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Disclaimers

* (Almost) no programming!
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Class info

MW 10:30 - 12:00, Towne 307
Grading:

— 1-2 homework assignments (40%)
— Project (60%)

Office hours by appointment
Slides will be posted



What is this class about?

* Not about the band
(https://en. W|k|ped|a org/W|k|/B|g_Data (band))

7> hy BIG DATA


https://en.wikipedia.org/wiki/Big_Data_(band)

What is this class about?

The four V’s: volume, velocity, variety, veracity

Volume: “Big Data” = too big to fit in RAM
— Today 16GB = 10 =ig” starts at terabytes
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Getting hands dirty

* Cloud computing platforms (all offer free trials):

— Amazon EC2 (1 CPU/12mo) “*amazon ‘Ecz
) " webservices™ p
— Microsoft Azure (5200/1mo)

— Google Compute Engine ($S200/2mo) e WmdowsAzure-

* Distributed Google Code Jam

— First time in 2015:
https://code.google.com/codejam/distributed index.html

— Caveats:
* Very basic aspects of distributed algorithms (few rounds)
 Smalldata (~1 , with hundreds MB RAM)

 Fast query access (~0.01 per request), “data with queries”


https://code.google.com/codejam/distributed_index.html

Outline

* Part 1: Streaming Algorithms

Highlights:

* Approximate counting

 #t Distinct Elements,
Hyperloglog

* Median

* Frequency moments

 Heavy hitters

* Graph sketching




Outline

Part 2: Algorithms for numerical linear algebra

Highlights:
* Dimension reduction
AL * Nearest neighbor
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Outline

* Part 3: Massively Parallel Algorithms

Highlights:

e Computational Model
e Sorting (Terasort)

* Connectivity, MST

* Filtering dense graphs
 Euclidean MST




Outline

* Part 4: Sublinear Time Algorithms

Highlights:

“Data with queries”
Sublinear approximation
Property Testing

Testing images,
sortedness,
connectedness

Testing noisy data



Today



Puzzles

You see a sequence of values o arriving one
by one:
* (Easy, “Find a missing player”)
—Ifall ' are different and have values between 1 and
+ 1, which value is missing?
— You have (log ) space

 Example:
— There are 11 soccer players with numbers 1, ..., 11.

— You see 10 of them one by one, which one is missing?
You can only remember a single number.

































Which number was missing?




Puzzle #1

You see a sequence of values o arriving one
by one:
* (Easy, “Find a missing player”)
—Ifall ' are different and have values between 1 and
+ 1, which value is missing?
— You have (log ) space

 Example:
— There are 11 soccer players with numbers 1, ..., 11.

— You see 10 of them one by one, which one is missing?
You can only remember a single number.



Puzzle #2

You see a sequence of values
one by one:

* (Harder, “Keep a random team”)

— How can you maintain a uniformly random sample
of values out of those you have seen so far?

P arriving

— You can store exactly items at any time

* Example:

— You want to have a team of 11 players randomly
chosen from the set you have seen.

— Players arrive one at a time and you have to
decide whether to keep them or not.



Puzzle #3

You see a sequence of values , arriving

—
one by one:

* (Very hard, “Count the number of players”)

— What is the total number of values up to error
+ 7

—You have (log log / 4)space and can be
completely wrong with some small probability



Puzzles

You see a sequence of values P arriving one by one:
e (Easy, “Find a missing player”)
—Ifall  are different and have values between I and  + 1,
which value is missing?

— You have (log ) space
* (Harder, “Keep a random team”)

— How can you maintain a uniformly random sample of values
out of those you have seen so far?

— You can store exactly items at any time
* (Very hard, “Count the number of players”)

— What is the total number of values up to error + 7

e )



Part 1: Probability 101

“The bigger the data the better you should know
your Probability”

* Basic Probability:

— Probability, events, random variables
— Expectation, variance / standard deviation

— Conditional probability, independence, pairwise
independence, mutual independence



Expectation

= random variable with values pres g e

Expectation IE[ ] o

E[ 1= ),x Pl = ]
=1
Properties(Iineari’fy)::| [ ]
[E = [E
E[ + ]=E[ J+E[ ]
Useful fact: if all > 0 and integer then

o0
—



e \ariance

= [E

= 1

Variance

[ ]=E[(X - E[X])?]

[ ]=E[x -E[
]E_
2

2 -2 -E[X

-2E[ - E[X]

X])?] =
+ E[X]?]
+ E[E[X]?]

 [E[X] is some fixed value (a constant)
+ 2E[ -E[X]]= 2E[X] E[X] =2 E4[ ]
+ E[E[X]¢] = E°[X]



Independence

* Two random variables and are independent if
and only if (iff) for every ,

pr[ =, = ]=pr[ = ]-Pifi= ]

e Variables P are mutually independent iff

pr[ = . = ]:[!Pr[ - ]

e Variables
all pairs i,j

Pl <, = J=pe[ = ]pe[ = ]

Iy are pairwise independent iff for



Conditional Probabilities

* For two events 1and X

PI‘[O 1 2]
Pr( ,l 4] = Pl ]
&

 If two random variables (r.vs) are independent

Pr[__zz 2 17 1]

Py = g 2= o
Pr[ 17 1]

Pr = =
= [ L 1] [ 2 2] (by independence)

Prlf = ]

(by definition)




Union Bound

For any events P

Pr[ , P ]_iPr[ 1] +Pr[ 2]+...
+Pr:r[<_>]]

* Pro: Works even for dependent variables!
* Con: Sometimes very loose, especially for mutually



Independence and Linearity of
Expectation/Variance

e Linearity of expectation (even for dependent
variables!):

E), z;E[ ]

| =1
* Linearity of variance (only for pairwise independent
variables!)

IEEINE
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Part 2: Inequalities

 Markov inequality
* Chebyshev inequality
* Chernoff bound



Markov’s Inequality
* Forevery >0: Pr[ > [ ]]51

* Proof (by contradiction) Pr[ > [ ]]>1

[ ]:Z -Prfoi = ] (by definition)

> Z . Pr|[ =] (pick only some i’s)
= [



Markov’s Inequality

* Forevery >0: Pr[ > [ ]]51
» Corollary (c'= [ |):

Forevery '>0:Pr| > '|s

* Pro: always works!
* Cons:

— Not very precise

— Doesn’t work for the lower tail: Pr[ <



Chebyshev’s Inequality

* Forevery >0:

erfl - [l VT T3]3

 Proof:

erl - [l 4 T1
=prl] - [JF22 [ ] (by

squaring)

- LIF= 210 - [ 1117 (def of van

(by Markov’s inequality)

<

Pr
1
2



Chebyshev’s Inequality

* Forevery >0
1
el - [1l= VT3] 55

* Corollary ( = \/ [ 1):
For every "> 0:

pe[| - [z ] s—nr




Chernoff bound

* Let ... beindependentand identically

distributed r.vs with range [0,1] and
expectation

1
e Then if =—Z and 1> >0,

Pr{| - |z ]SZeXp(—TZ)



Chernoff bound (corollary)

* Let ... beindependentand identically

distributed r.vs with range [0, c] and
expectation

1
e Then if =—Z and 1> >0,

Pr{| - |z ]SZeXp(—3—2)



Chernoff v.s Chebyshev
Large values of t is exactly what we need!

Let 100 be independent and identically distributed r.vs with
1
range [0,1] and expectation .lLet =— :
1
e Chebyshev: Pr U - ‘ > ] = (—

« Chernoff: Pr U — ‘2 ]= -Q()

So is Chernoff always better for us?

e Voac Fiwain havinati i A viarimhilaAace



Answers to the puzzles

You see a sequence of values P arriving one by
one:
* (Easy)
—Ifall  are different and have values between 1 and  + 1,
which value is missing?

— You have (log ) space

— Answer: missing value = Z — Z
=1 =1

* (Harder)

— How can you maintain a uniformly random sample of
values out of those you have seen so far?



Part 3: Morris’s Algorithm

* (Very hard, “Count the number of players”)

— What is the total number of values up to error
+ 7

—You have (log log / <) space and can be
completely wrong with some small probability



Morris’s Algorithm: Alpha-version

rF==1

Maintains a counter using logldgii bits
* |nitialize toO
* When an item arrives, increase X by 1 with

1
robability —
P VZ

* When the stream is over, output 2 -1

Claim: [2]= + 1



Morris’s Algorithm: Alpha-version

F==1

Maintains a counter using Ioglr!@gyg)j bits

e |nitialize to 0, when an item arrives, increase X

1
by 1 with probability 2—

Claim: [2]= + 1

* Let the value after seeing items be

2 1=, Pl y= 1 (2 1 =]
=0
- 1 1Yy



Morris’s Algorithm: Alpha-version

Maintains a counter  using IOQEKQQ:F}{)E bits

baad

* Initialize to 0, when an item arrives, increase X by 1 with

1
probability —
Claim: [22] E 2+§ + 1
2 2
ZPF 1= [22 [2 -1=]
=0

_ ZPr@? = g(la2e(1 -1)2)



Morris’s Algorithm: Alpha-version

rF==1

Maintains a counter using loglog:; bits
* |nitialize to 0, when an item arrives, increase

1
X by 1 with probability 2—

 [2]=n+1  [2]= (9
* [s this good?



Morris’s Algorithm: Beta-version

rF==1

Maintains counters Z,.., using loglagl: bits
for each

/
e |nitialize to 0, when an item arrives, increase

1
each by 1 independently with probability —
2

1
* OutputZ = —[22 -1)
=1

2 ]=n+1, [2]= (2
o /1\—1 \ [ 2\



Morris’s Algorithm: Beta-version

rF==1

Maintains counters 1, .., using loglagi bits
for each

* OQutput Z = —[ZZ -

L (fzz -)= )

> ]<1/3

r 1 [ 2\ 4

* Claim: If 2— then Pr[



Morris’s Algorithm: Final

What if | want the probability of error to be
really small, i.e. Pr U = ‘ > ] < 7

1
Same Chebyshev-based analysis: = (—)

2
[os”)
log — | times

independently in parallel and output the
median answer.

1
(log log - log—\

Do these steps

Tf\""\l PN " N NN e



Morris’s Algorithm: Final

1
* Dothesesteps = | log— |times

independently in parallel and output the median
answer

F==1

Maintains counters 7, ..., usinglogir!f(:ig[f@jbits
for each

/
e |nitialize to 0, when an item arrives, increase

1
each by 1 independently with probability —
2



Morris’s Algorithm: Final Analysis

Claim: Pr H — ‘> ] <
e Let be anindicatorr.v. for the event that

—~ ‘s , Where is the i-th trial.



Thank youl!

* Questions?
* Next time:
— More streaming algorithms



