CIS 700:
“algorithms for Big Data”

Lecture 1: Intro

Slides at http://grigory.us/big-data-class.html

Grigory Yaroslavtsev
http://grigory.us .

http://grigory.us/
http://grigory.us/big-data-class.html

Disclaimers

 Alot of Math!

FIELDS arrancep BY PORITY
FORE PURE

SOCIOLOGY IS PSYCHOLAGY IS BIOLOGY 1§ WHICH 15 JusT
JOST APFUED JUsT APPLIED JUST APPLED APPLIED PHYSICS,
IT's NICE TO

PSYCHOLOGY BlIOLOGY. CHEMISTRY
BE ON TOF

1% %49

OH, HEY, TDIDNT
SEE YOU GUYS ALL
THE WAy OVER THERE.

L

5{}55;_5{5,5[-5 PEYCHOLOGISTS — BIOLOGISTS CHEMISTS PHysICISTS

MATHEMATICIANS

Disclaimers

* (Almost) no programming!

THUS, FOR ANY NONDETERMINISTIC TURING
MACHINE M THAT RUNS IN SOME POLYNOMIAL
TIME pen), WE CAN DEVISE AN ALGORITHM

THAT TAKES AN INPUT w OF LENGTH n AND
PRODUCES Eu,.. THE RUNNING TIME IS O¢pm)

ON A MULTITAPE DETERMINISTIC TURING
MACHINE AND ...

?’-‘,;_,‘aﬂ " ‘ffﬁo‘fé'ﬁ
“le 7 M 11 Lo L
M =(:q.",l‘/8J’;]’ '4‘ 5”.'.;',-;_4

WTF, MAN. I JUST
WANTED TO LEARN
How TO PROGRAM
VIDEO GAMES.

*la A@FP Ve -) yf.)

N:M

Class info

MW 10:30 - 12:00, Towne 307
Grading:

— 1-2 homework assignments (40%)
— Project (60%)

Office hours by appointment
Slides will be posted

What is this class about?

* Not about the band
(https://en. W|k|ped|a org/W|k|/B|g_Data (band))

7> hy BIG DATA

https://en.wikipedia.org/wiki/Big_Data_(band)

What is this class about?

The four V’s: volume, velocity, variety, veracity

Volume: “Big Data” = too big to fit in RAM
— Today 16GB = 10 =ig” starts at terabytes

Vel FJ"" P
EOCI&_:-‘;

i a il " ; B v :'.f i : - b~ 1.| "E_ﬁ-.—-
— Doesh gnigsn RA & e EEBESETOSSESEY on the fly

Getting hands dirty

* Cloud computing platforms (all offer free trials):

— Amazon EC2 (1 CPU/12mo) “*amazon ‘Ecz
) " webservices™ p
— Microsoft Azure (5200/1mo)

— Google Compute Engine ($S200/2mo) e WmdowsAzure-

* Distributed Google Code Jam

— First time in 2015:
https://code.google.com/codejam/distributed index.html

— Caveats:
* Very basic aspects of distributed algorithms (few rounds)
 Smalldata (~1 , with hundreds MB RAM)

 Fast query access (~0.01 per request), “data with queries”

https://code.google.com/codejam/distributed_index.html

Outline

* Part 1: Streaming Algorithms

Highlights:

* Approximate counting

 #t Distinct Elements,
Hyperloglog

* Median

* Frequency moments

 Heavy hitters

* Graph sketching

Outline

Part 2: Algorithms for numerical linear algebra

Highlights:
* Dimension reduction
AL * Nearest neighbor

._-'g.\;:. AA00 . LY

s ool search

: .‘!r:%%%“‘ ‘.nl D [¥ .

0100100101010 o i ketchi
s w000, Linear sketching

’i’.": > e Linear regrESSiOH
* Low rank
approximation

Outline

* Part 3: Massively Parallel Algorithms

Highlights:

e Computational Model
e Sorting (Terasort)

* Connectivity, MST

* Filtering dense graphs
 Euclidean MST

Outline

* Part 4: Sublinear Time Algorithms

Highlights:

“Data with queries”
Sublinear approximation
Property Testing

Testing images,
sortedness,
connectedness

Testing noisy data

Today

Puzzles

You see a sequence of values o arriving one
by one:
* (Easy, “Find a missing player”)
—Ifall ' are different and have values between 1 and
+ 1, which value is missing?
— You have (log) space

 Example:
— There are 11 soccer players with numbers 1, ..., 11.

— You see 10 of them one by one, which one is missing?
You can only remember a single number.

Which number was missing?

Puzzle #1

You see a sequence of values o arriving one
by one:
* (Easy, “Find a missing player”)
—Ifall ' are different and have values between 1 and
+ 1, which value is missing?
— You have (log) space

 Example:
— There are 11 soccer players with numbers 1, ..., 11.

— You see 10 of them one by one, which one is missing?
You can only remember a single number.

Puzzle #2

You see a sequence of values
one by one:

* (Harder, “Keep a random team”)

— How can you maintain a uniformly random sample
of values out of those you have seen so far?

P arriving

— You can store exactly items at any time

* Example:

— You want to have a team of 11 players randomly
chosen from the set you have seen.

— Players arrive one at a time and you have to
decide whether to keep them or not.

Puzzle #3

You see a sequence of values , arriving

—
one by one:

* (Very hard, “Count the number of players”)

— What is the total number of values up to error
+ 7

—You have (log log / 4)space and can be
completely wrong with some small probability

Puzzles

You see a sequence of values P arriving one by one:
e (Easy, “Find a missing player”)
—Ifall are different and have values between I and + 1,
which value is missing?

— You have (log) space
* (Harder, “Keep a random team”)

— How can you maintain a uniformly random sample of values
out of those you have seen so far?

— You can store exactly items at any time
* (Very hard, “Count the number of players”)

— What is the total number of values up to error + 7

e)

Part 1: Probability 101

“The bigger the data the better you should know
your Probability”

* Basic Probability:

— Probability, events, random variables
— Expectation, variance / standard deviation

— Conditional probability, independence, pairwise
independence, mutual independence

Expectation

= random variable with values pres g e

Expectation IE[] o

E[1=),x Pl =]
=1
Properties(Iineari’fy)::| []
[E = [E
E[+]=E[J+E[]
Useful fact: if all > 0 and integer then

o0
—

e \ariance

= [E

= 1

Variance

[]=E[(X - E[X])?]

[]=E[x -E[
]E_
2

2 -2 -E[X

-2E[- E[X]

X])?] =
+ E[X]?]
+ E[E[X]?]

 [E[X] is some fixed value (a constant)
+ 2E[-E[X]]= 2E[X] E[X] =2 E4[]
+ E[E[X]¢] = E°[X]

Independence

* Two random variables and are independent if
and only if (iff) for every ,

pr[=, =]=pr[=]-Pifi=]

e Variables P are mutually independent iff

pr[= . =]:[!Pr[-]

e Variables
all pairs i,j

Pl <, = J=pe[=]pe[=]

Iy are pairwise independent iff for

Conditional Probabilities

* For two events 1and X

PI‘[O 1 2]
Pr(,l 4] = Pl]
&

 If two random variables (r.vs) are independent

Pr[__zz 2 17 1]

Py = g 2= o
Pr[17 1]

Pr = =
= [L 1] [2 2] (by independence)

Prlf =]

(by definition)

Union Bound

For any events P

Pr[, P]_iPr[1] +Pr[2]+...
+Pr:r[<_>]]

* Pro: Works even for dependent variables!
* Con: Sometimes very loose, especially for mutually

Independence and Linearity of
Expectation/Variance

e Linearity of expectation (even for dependent
variables!):

E), z;E[]

| =1
* Linearity of variance (only for pairwise independent
variables!)

IEEINE

L =1 =1

Part 2: Inequalities

 Markov inequality
* Chebyshev inequality
* Chernoff bound

Markov’s Inequality
* Forevery >0: Pr[> []]51

* Proof (by contradiction) Pr[> []]>1

[]:Z -Prfoi =] (by definition)

> Z . Pr|[=] (pick only some i’s)
= [

Markov’s Inequality

* Forevery >0: Pr[> []]51
» Corollary (c'= [|):

Forevery '>0:Pr| > '|s

* Pro: always works!
* Cons:

— Not very precise

— Doesn’t work for the lower tail: Pr[<

Chebyshev’s Inequality

* Forevery >0:

erfl - [l VT T3]3

 Proof:

erl - [l 4 T1
=prl] - [JF22 [] (by

squaring)

- LIF= 210 - [1117 (def of van

(by Markov’s inequality)

<

Pr
1
2

Chebyshev’s Inequality

* Forevery >0
1
el - [1l= VT3] 55

* Corollary (= \/ [1):
For every "> 0:

pe[| - [z] s—nr

Chernoff bound

* Let ... beindependentand identically

distributed r.vs with range [0,1] and
expectation

1
e Then if =—Z and 1> >0,

Pr{| - |z]SZeXp(—TZ)

Chernoff bound (corollary)

* Let ... beindependentand identically

distributed r.vs with range [0, c] and
expectation

1
e Then if =—Z and 1> >0,

Pr{| - |z]SZeXp(—3—2)

Chernoff v.s Chebyshev
Large values of t is exactly what we need!

Let 100 be independent and identically distributed r.vs with
1
range [0,1] and expectation .lLet =— :
1
e Chebyshev: Pr U - ‘ >] = (—

« Chernoff: Pr U — ‘2]= -Q()

So is Chernoff always better for us?

e Voac Fiwain havinati i A viarimhilaAace

Answers to the puzzles

You see a sequence of values P arriving one by
one:
* (Easy)
—Ifall are different and have values between 1 and + 1,
which value is missing?

— You have (log) space

— Answer: missing value = Z — Z
=1 =1

* (Harder)

— How can you maintain a uniformly random sample of
values out of those you have seen so far?

Part 3: Morris’s Algorithm

* (Very hard, “Count the number of players”)

— What is the total number of values up to error
+ 7

—You have (log log / <) space and can be
completely wrong with some small probability

Morris’s Algorithm: Alpha-version

rF==1

Maintains a counter using logldgii bits
* |nitialize toO
* When an item arrives, increase X by 1 with

1
robability —
P VZ

* When the stream is over, output 2 -1

Claim: [2]= + 1

Morris’s Algorithm: Alpha-version

F==1

Maintains a counter using Ioglr!@gyg)j bits

e |nitialize to 0, when an item arrives, increase X

1
by 1 with probability 2—

Claim: [2]= + 1

* Let the value after seeing items be

2 1=, Pl y= 1 (2 1 =]
=0
- 1 1Yy

Morris’s Algorithm: Alpha-version

Maintains a counter using IOQEKQQ:F}{)E bits

baad

* Initialize to 0, when an item arrives, increase X by 1 with

1
probability —
Claim: [22] E 2+§ + 1
2 2
ZPF 1= [22 [2 -1=]
=0

_ ZPr@? = g(la2e(1 -1)2)

Morris’s Algorithm: Alpha-version

rF==1

Maintains a counter using loglog:; bits
* |nitialize to 0, when an item arrives, increase

1
X by 1 with probability 2—

 [2]=n+1 [2]= (9
* [s this good?

Morris’s Algorithm: Beta-version

rF==1

Maintains counters Z,.., using loglagl: bits
for each

/
e |nitialize to 0, when an item arrives, increase

1
each by 1 independently with probability —
2

1
* OutputZ = —[22 -1)
=1

2]=n+1, [2]= (2
o /1\—1 \ [2\

Morris’s Algorithm: Beta-version

rF==1

Maintains counters 1, .., using loglagi bits
for each

* OQutput Z = —[ZZ -

L (fzz -)=)

>]<1/3

r 1 [2\ 4

* Claim: If 2— then Pr[

Morris’s Algorithm: Final

What if | want the probability of error to be
really small, i.e. Pr U = ‘ >] < 7

1
Same Chebyshev-based analysis: = (—)

2
[os”)
log — | times

independently in parallel and output the
median answer.

1
(log log - log—\

Do these steps

Tf\""\l PN " N NN e

Morris’s Algorithm: Final

1
* Dothesesteps = | log— |times

independently in parallel and output the median
answer

F==1

Maintains counters 7, ..., usinglogir!f(:ig[f@jbits
for each

/
e |nitialize to 0, when an item arrives, increase

1
each by 1 independently with probability —
2

Morris’s Algorithm: Final Analysis

Claim: Pr H — ‘>] <
e Let be anindicatorr.v. for the event that

—~ ‘s , Where is the i-th trial.

Thank youl!

* Questions?
* Next time:
— More streaming algorithms

