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Disclaimers

• A lot of Math!



Disclaimers

• (Almost) no programming!



Class info

• MW 10:30 – 12:00, Towne 307
• Grading:
– 1-2 homework assignments (40%)
– Project (60%)

• Office hours by appointment
• Slides will be posted



What is this class about?

• Not about the band 
(https://en.wikipedia.org/wiki/Big_Data_(band))

https://en.wikipedia.org/wiki/Big_Data_(band)


What is this class about?
• The four V’s: volume, velocity, variety, veracity
• Volume: “Big Data” = too big to fit in RAM
– Today 16GB ≈ 100$ => “big” starts at terabytes

• Velocity: real-time
– Doesn’t fit in RAM + has to be processed on the fly

• N = size of data, time and memory o(N)
• o(N): � 1 ,	�(logN) ,�(��) where 0 < � < 1



• Cloud computing platforms (all offer free trials):
– Amazon EC2 (1 CPU/12mo)
– Microsoft Azure ($200/1mo)
– Google Compute Engine ($200/2mo)

• Distributed Google Code Jam
– First time in 2015: 

https://code.google.com/codejam/distributed_index.html 
– Caveats: 

• Very basic aspects of distributed algorithms (few rounds)
• Small data (~1	��, with hundreds MB RAM)
• Fast query access (~0.01	�� per request), “data with queries” 

Getting hands dirty

https://code.google.com/codejam/distributed_index.html


Outline

• Part 1: Streaming Algorithms
Highlights:
• Approximate counting
• # Distinct Elements, 

Hyperloglog
• Median
• Frequency moments
• Heavy hitters
• Graph sketching



Outline 

• Part 2: Algorithms for numerical linear algebra
Highlights:
• Dimension reduction
• Nearest neighbor 

search
• Linear sketching
• Linear regression
• Low rank 

approximation



Outline

• Part 3: Massively Parallel Algorithms
Highlights:
• Computational Model
• Sorting (Terasort)
• Connectivity, MST
• Filtering dense graphs
• Euclidean MST



Outline

• Part 4: Sublinear Time Algorithms

Highlights:
• “Data with queries”
• Sublinear approximation
• Property Testing
• Testing images, 

sortedness, 
connectedness

• Testing noisy data



Today



Puzzles

You see a sequence of values �1,	…,	��, arriving one
by one: 
• (Easy, “Find a missing player”) 
– If all �′

�
� are different and have values between 1 and 

� + 1, which value is missing? 
– You have �( log � ) space

• Example:
– There are 11 soccer players with numbers 1, …, 11. 
– You see 10 of them one by one, which one is missing? 

You can only remember a single number. 
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Which number was missing?



Puzzle #1

You see a sequence of values �1,	…,	��, arriving one
by one: 
• (Easy, “Find a missing player”) 
– If all �′

�
� are different and have values between 1 and 

� + 1, which value is missing? 
– You have �( log � ) space

• Example:
– There are 11 soccer players with numbers 1, …, 11. 
– You see 10 of them one by one, which one is missing? 

You can only remember a single number. 



Puzzle #2

You see a sequence of values �1,	…,	��, arriving 
one by one: 
• (Harder, “Keep a random team”)  
– How can you maintain a uniformly random sample

of � values out of those you have seen so far? 
– You can store exactly � items at any time

• Example:
– You want to have a team of 11 players randomly 

chosen from the set you have seen.
– Players arrive one at a time and you have to 

decide whether to keep them or not.



Puzzle #3

You see a sequence of values �1,	…,	��, arriving 
one by one: 
• (Very hard, “Count the number of players”)
–What is the total number of values up to error 
± ��? 

– You have �( log log � / �2) space and can be 
completely wrong with some small probability 



Puzzles

You see a sequence of values �1,	…,	��, arriving one by one:
• (Easy, “Find a missing player”) 
– If all �′

�
� are different and have values between 1 and � + 1, 

which value is missing? 
– You have �( log � ) space

• (Harder, “Keep a random team”)  
– How can you maintain a uniformly random sample of � values 

out of those you have seen so far? 
– You can store exactly � items at any time

• (Very hard, “Count the number of players”)
– What is the total number of values up to error ± ��? 
– You have �( log log � / �2) space and can be completely 

wrong with some small probability 



Part 1: Probability 101

“The bigger the data the better you should know
your Probability”
• Basic Probability:
– Probability, events, random variables
– Expectation, variance / standard deviation 
– Conditional probability, independence, pairwise 

independence, mutual independence



Expectation

• � = random variable with values �1,…,	��,	…
• Expectation 피 �

피 � =∑
� = 1

∞

xi	 ⋅ Pr⁡[� = �
�
]

• Properties (linearity): 
피 �� = �피 �

피 � + � = 피 �] + 피[�
• Useful fact: if all �

�
≥ 0 and integer then 

피 � =∑
� = 1

∞

Pr⁡[� ≥ �]  



Variance

• Variance ��� � = 피[(X − 피[X])2]

��� � = 피[(X − 피[X])2] =  
= 피 �2	 − 2	� ⋅ 피[X] + 피[X]2

= 피[�2] − 2피[� ⋅ 피[X]] +  피[피[X]2]

• 피[X] is some fixed value (a constant)
• 2 피[� ⋅ 피[X]] =  2 피[X] ⋅ 피[X] = 2	피2[�]
• 피[피[X]2] = 	피2[X]



Independence

• Two random variables � and � are independent if 
and only if (iff) for every �,	�:

Pr � = �,	� = � = Pr � = � ⋅ Pr⁡[� = �]
• Variables �1,…,	�� are mutually independent iff

Pr �� = �1,	…,�� = �� = ∏
� = 1

�

Pr �
�
= �
�

• Variables �1,…,	�� are pairwise independent iff for 
all pairs i,j
Pr �

�
= �
�
,	�
�
= �
�
= Pr �

�
= �
�

Pr �
�
= �
�



Conditional Probabilities

• For two events �1 and �2:

Pr �2|�1 =
Pr⁡[�1	���	�2]

Pr⁡[�1]
• If two random variables (r.vs) are independent
Pr �2 = �2|�1 = �1

=
Pr⁡[�1 = �1	���	�2 = �2]

Pr �1 = �1
		(by definition)

=
Pr �1 = �1 �� �2 = �2

Pr[�1 = �1]
	 (by independence)

= Pr⁡[�2 = �2] 
 



Union Bound

For any events �1,	…,	��:
Pr �1��	�2	��…��	�� ≤ Pr �1 + Pr �2 + …

+ Pr⁡[�
�
]

• Pro: Works even for dependent variables!
• Con: Sometimes very loose, especially for mutually 



Independence and Linearity of 
Expectation/Variance

• Linearity of expectation (even for dependent 
variables!):

피 ∑
� = 1

�

�
�
=∑
� = 1

�

피[�
�
]

• Linearity of variance (only for pairwise independent 
variables!)

��� ∑
� = 1

�

�
�
=∑
� = 1

�

���[�
�
]



Part 2: Inequalities

• Markov inequality
• Chebyshev inequality
• Chernoff bound



Markov’s Inequality

• For every � > 0:			Pr � ≥ �	� � ≤
1
�

• Proof (by contradiction) Pr � ≥ �	� � >
1
�
	

� � =∑
�

� ⋅ Pr⁡[� = �]																		(by definition)

≥ 	 ∑
� = �� �

∞

� ⋅ Pr � = �           (pick only some i’s)



Markov’s Inequality

• For every � > 0:			Pr � ≥ �	� � ≤
1
�

• Corollary (c′ = �	� � )	:

For every �′ > 0:	Pr � ≥ �′	 ≤
� �

�′
 

• Pro: always works!
• Cons: 
– Not very precise
– Doesn’t work for the lower tail: Pr � ≤ �	� �



Chebyshev’s Inequality

• For every � > 0: 

Pr �	 − � � ≥ �	 ��� � ≤
1
�2

• Proof: 

Pr �	 − � � ≥ �	 ��� �  
= 	 Pr �	 − � � 2 ≥ �2��� �                (by 

squaring)
= Pr �	 − � � 2 ≥ �2�[ �	 − � � 2 ]	(def.	of	Var)

≤
1
�2
	                                             (by Markov’s inequality)



Chebyshev’s Inequality

• For every � > 0: 

Pr �	 − � � ≥ �	 ��� � ≤
1
�2

• Corollary (�′ = �	 ��� � ):
For every �′ > 0: 

Pr �	 − � � ≥ �′ ≤
��� �

�′2



Chernoff bound

• Let �1…�� be independent and identically 
distributed r.vs with range [0,1] and 
expectation �. 

• Then if � =
1
�
∑
�

�
�
 and 1 > � > 0,

Pr �	 − � ≥ �� ≤ 2 exp −
���2

3



Chernoff bound (corollary)

• Let �1…�� be independent and identically 
distributed r.vs with range [0, c] and 
expectation �. 

• Then if � =
1
�
∑
�

�
�
 and 1 > � > 0,

Pr �	 − � ≥ �� ≤ 2 exp −
���2

3�



Chernoff v.s Chebyshev

Large values of t is exactly what we need!

Let �1…�� be independent and identically distributed r.vs with 

range [0,1] and expectation �. Let � =
1
�
∑
�

�
�
.

• Chebyshev: Pr �	 − � ≥ � =�
1
�

• Chernoff: Pr �	 − � ≥ � = � −Ω(�)

So is Chernoff always better for us?
• Yes, if we have i.i.d. variables.
• No, if we have dependent or only pairwise independent 

random varaibles.
• If the variables are not identical – Chernoff-type bounds exist.



Answers to the puzzles
You see a sequence of values �1,	…,	��, arriving one by 
one: 
• (Easy) 
– If all �′

�
� are different and have values between 1 and � + 1, 

which value is missing? 
– You have �( log � ) space

– Answer: missing value = ∑
� = 1

�

�	 −∑
� = 1

�

�
�

• (Harder)  
– How can you maintain a uniformly random sample of � 

values out of those you have seen so far? 
– You can store exactly � values at any time

– Answer: Store first �1,…,	��. When you see �
�
 for � > �, 

with probability S / � replace random value from your 
storage with �

�
.



Part 3: Morris’s Algorithm

• (Very hard, “Count the number of players”)
–What is the total number of values up to error 
± ��? 

– You have �( log log � / �2) space and can be 
completely wrong with some small probability 



Morris’s Algorithm: Alpha-version 

Maintains a counter � using log⁡log⁡� bits
• Initialize � to 0
• When an item arrives, increase X by 1 with 

probability 
1
2�

 

• When the stream is over, output 2� − 1

Claim: � 2� = � + 1 



Morris’s Algorithm: Alpha-version 

Maintains a counter � using log⁡log⁡� bits
• Initialize � to 0, when an item arrives, increase X 

by 1 with probability 
1
2�

 

Claim: � 2� = � + 1 
• Let the value after seeing � items be �

�

� 2�� =∑
� = 0

∞

Pr⁡[�
� − 1 = �	]� 2

�
�|�� − 1 = �

= 	 ∑
� = 0

∞

Pr⁡[�
� − 1 = �	]

1
2�
	2� + 1 + 1	 −

1
2�
2�

=∑
� = 0

∞

Pr⁡[�
� − 1 = �	] 2

� + 1 	 = 1 + � 2�� − 1



Morris’s Algorithm: Alpha-version 

Maintains a counter � using log⁡log⁡� bits

• Initialize � to 0, when an item arrives, increase X by 1 with 

probability 
1
2�

 

Claim: � 22� =
3
2
�2 +

3
2
� + 1 

� 22�� =∑
� = 0

∞

Pr⁡[2�� − 1 = �	]� 22��|2�� − 1 = �

=  ∑
� = 0

∞

Pr⁡[2�� − 1 = �	]
1
�
	4	�2 + 1	 −

1
�
�2



Morris’s Algorithm: Alpha-version 

Maintains a counter � using log⁡log⁡� bits
• Initialize � to 0, when an item arrives, increase

X by 1 with probability 
1
2�

 

• �[2�] = n + 1, ��� 2� =� �2  
• Is this good?



Morris’s Algorithm: Beta-version 

Maintains � counters �1,	…,�� using log⁡log⁡� bits 
for each
• Initialize ��′� to 0, when an item arrives, increase 

each �� by 1 independently with probability 
1

2��

• Output Z = 	
1
�
(∑
� = 1

�

2��	 − 1)		 

• �[2��] = n + 1, ��� 2�� =� �2  

• ��� � = ���	
1
�
∑
� = 1

�

2�� − 1 =�
�2

�
	

• Claim: If � ≥
�

�2
 then Pr �	 − � > �� < 1 / 3



Morris’s Algorithm: Beta-version 

Maintains � counters �1,	…,�� using log⁡log⁡� bits 
for each

• Output Z = 	
1
�
(∑
� = 1

�

2��	 − 1)		 

• ��� � = ���	
1
�
∑
� = 1

�

2�� − 1 =�
�2

�
	

• Claim: If � ≥
�

�2
 then Pr �	 − � > �� < 1 / 3

– Pr �	 − � > �	� <
���[�]
�2�2

=�
�2

�
⋅
1
�2�2

– If � ≥
�

�2
 we can make this at most 

1
3



Morris’s Algorithm: Final

• What if I want the probability of error to be 
really small, i.e. Pr �	 − � > �	� ≤ �?

• Same Chebyshev-based analysis: � =�
1
�2�

• Do these steps � =� log
1
�

 times 

independently in parallel and output the 
median answer.

• Total space: �
log log � ⋅ log

1
�

�2

 



Morris’s Algorithm: Final

• Do these steps � =� log
1
�

 times 

independently in parallel and output the median 
answer ��.

Maintains � counters �1,	…,�� using log⁡log⁡� bits 
for each
• Initialize ��′� to 0, when an item arrives, increase 

each �� by 1 independently with probability 
1

2��

• Output Z = 	
1
�
(∑
� = 1

�

2��	 − 1)		 



Morris’s Algorithm: Final Analysis

Claim: Pr ��	 − � > �	� ≤ �
• Let �

�
 be an indicator r.v. for the event that 

�
�
	 − � ≤ ��, where �

�
 is the i-th trial.

• Let � = ∑
�

�
�
. 

• Pr �� − � > �� ≤ Pr � ≤
�

2



Thank you!

• Questions?
• Next time: 
–More streaming algorithms


