CIS 700: "algorithms for Big Data"

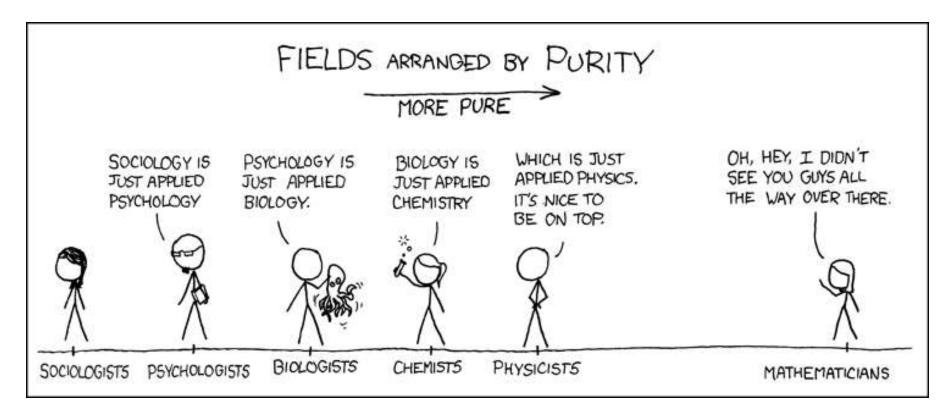
Lecture 1: Intro

Slides at http://grigory.us/big-data-class.html

Grigory Yaroslavtsev <u>http://grigory.us</u>

Disclaimers

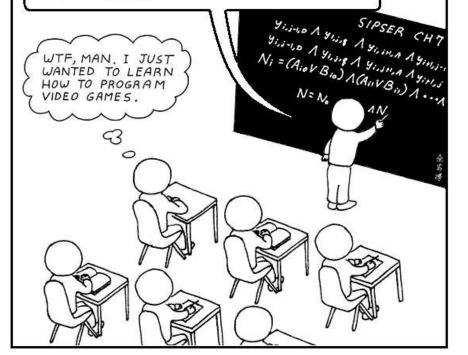
• A lot of Math!



Disclaimers

• (Almost) no programming!

THUS, FOR ANY NONDETERMINISTIC TURING MACHINE M THAT RUNS IN SOME POLYNOMIAL TIME p(n), WE CAN DEVISE AN ALGORITHM THAT TAKES AN INPUT ω OF LENGTH n AND PRODUCES $E_{n,\omega}$. THE RUNNING TIME IS $O(p^2(n))$ ON A MULTITAPE DETERMINISTIC TURING MACHINE AND...



Class info

- MW 10:30 12:00, Towne 307
- Grading:
 - 1-2 homework assignments (40%)
 - Project (60%)
- Office hours by appointment
- Slides will be posted

What is this class about?

 Not about the band (<u>https://en.wikipedia.org/wiki/Big_Data_(band)</u>)

What is this class about?

- The four V's: volume, velocity, variety, veracity
- Volume: "Big Data" = too big to fit in RAM

- Today 16GB ≈ 100 \$ => "big" starts at terabytes

Getting hands dirty

- Cloud computing platforms (all offer free trials):
 - Amazon EC2 (1 CPU/12mo)
 - Microsoft Azure (\$200/1mo)
 - Google Compute Engine (\$200/2mo)
- Distributed Google Code Jam
 - First time in 2015:

https://code.google.com/codejam/distributed_index.html

- Caveats:
 - Very basic aspects of distributed algorithms (few rounds)
 - Small data (~ 1 , with hundreds MB RAM)
 - Fast query access (~0.01 per request), "data with queries"

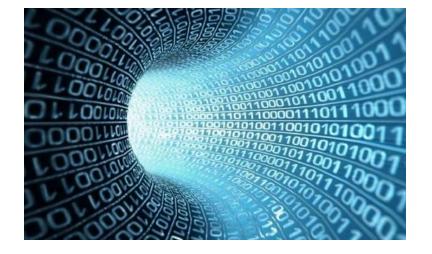
• Part 1: Streaming Algorithms

Highlights:

- Approximate counting
- # Distinct Elements, Hyperloglog
- Median
- Frequency moments
- Heavy hitters
- Graph sketching

- Part 2: Algorithms for numerical linear algebra
 - Highlights:

- Nearest neighbor search
- Linear sketching
- Linear regression
- Low rank approximation



• Part 3: Massively Parallel Algorithms

Highlights:

- Computational Model
- Sorting (Terasort)
- Connectivity, MST
- Filtering dense graphs
- Euclidean MST

• Part 4: Sublinear Time Algorithms

Highlights:

- "Data with queries"
- Sublinear approximation
- Property Testing
- Testing images, sortedness, connectedness
- Testing noisy data

Today

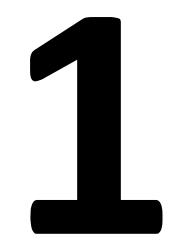
Puzzles

You see a sequence of values 1, ..., , arriving one by one:

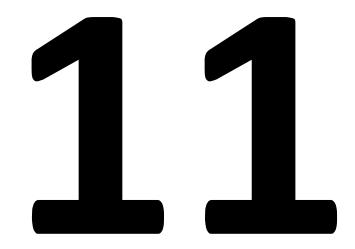
- (Easy, "Find a missing player")
 - If all i' are different and have values between 1 and

+ 1, which value is missing?

- You have (log) space
- Example:
 - There are 11 soccer players with numbers 1, ..., 11.
 - You see 10 of them one by one, which one is missing?
 You can only remember a single number.







Which number was missing?

Puzzle #1

You see a sequence of values 1, ..., , arriving one by one:

- (Easy, "Find a missing player")
 - If all i' are different and have values between 1 and

+ 1, which value is missing?

- You have (log) space
- Example:
 - There are 11 soccer players with numbers 1, ..., 11.
 - You see 10 of them one by one, which one is missing?
 You can only remember a single number.

Puzzle #2

You see a sequence of values 1, ..., , arriving one by one:

- (Harder, "Keep a random team")
 - How can you maintain a uniformly random sample of values out of those you have seen so far?
 - You can store exactly items at any time
- Example:
 - You want to have a team of 11 players randomly chosen from the set you have seen.
 - Players arrive one at a time and you have to decide whether to keep them or not.

Puzzle #3

You see a sequence of values 1, ..., , arriving one by one:

- (Very hard, "Count the number of players")
 - What is the total number of values up to error
 ± ?
 - You have (log log / ²) space and can be completely wrong with some small probability

Puzzles

You see a sequence of values 1, ..., , arriving one by one:

- (Easy, "Find a missing player")
 - If all ' are different and have values between 1 and +1, which value is missing?
 - You have (log) space
- (Harder, "Keep a random team")
 - How can you maintain a uniformly random sample of values out of those you have seen so far?
 - You can store exactly items at any time
- (Very hard, "Count the number of players")
 - What is the total number of values up to error \pm ?

Part 1: Probability 101

"The bigger the data the better you should know your Probability"

- Basic Probability:
 - Probability, events, random variables
 - Expectation, variance / standard deviation
 - Conditional probability, independence, pairwise independence, mutual independence

Expectation

- = random variable with values 1,..., ,
- Expectation $\mathbb{E}[]_{\infty}$ $\mathbb{E}[] = \sum_{i=1}^{\infty} x_i \cdot \Pr[\underline{f}_{0}] = J$
- Properties (linearity): $\mathbb{E}\begin{bmatrix} \\ \end{bmatrix} = \mathbb{E}\begin{bmatrix} \\ \end{bmatrix}$ $\mathbb{E}\begin{bmatrix} \\ \end{bmatrix} = \mathbb{E}\begin{bmatrix} \\ \end{bmatrix} + \mathbb{E}\begin{bmatrix} \end{bmatrix}$
- Useful fact: if all ≥ 0 and integer then

 ∞

Variance

• Variance $\begin{bmatrix} \end{bmatrix} = \mathbb{E}[(\mathbf{X} - \mathbb{E}[\mathbf{X}])^2]$

- $\mathbb{E}[X]$ is some fixed value (a constant)
- $2 \mathbb{E}[\cdot \mathbb{E}[\mathbf{X}]] = 2 \mathbb{E}[\mathbf{X}] \cdot \mathbb{E}[\mathbf{X}] = 2 \mathbb{E}^2[]$ • $\mathbb{E}[\mathbb{E}[\mathbf{X}]^2] = \mathbb{E}^2[\mathbf{X}]$

Independence

- Two random variables and are independent if and only if (iff) for every , :
 Pr [= , =] = Pr [=] · Pr [=]
- Variables 1,..., are mutually independent iff

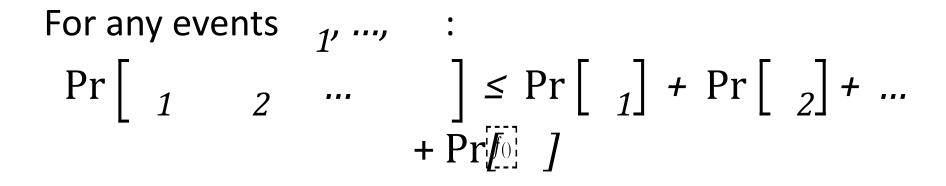
$$\Pr[=_{1'},...,=]=\prod_{i=1}^{n}\Pr[=]$$

• Variables 1,..., are pairwise independent iff for all pairs i,j $Pr \begin{bmatrix} z \\ z \end{bmatrix} = Pr \begin{bmatrix} z \end{bmatrix} Pr \begin{bmatrix} z \end{bmatrix}$

Conditional Probabilities

- For two events $_{1}$ and $_{2}$: $\Pr\begin{bmatrix} _{2} | _{1}\end{bmatrix} = \frac{\Pr[\underline{f_{0}}]_{1}}{\Pr[\underline{f_{0}}]_{1}}$
- If two random variables (r.vs) are independent $\Pr\left[\begin{array}{c} 2 = 2/1 = 1 \end{array}\right]$ $= \frac{\Pr\left[\begin{array}{c} 0 \end{array}\right]_{1} = 1}{\Pr\left[\begin{array}{c} 1 = 1 \end{array}\right]} \left[\begin{array}{c} 2 = 2 \end{array}\right]} \text{ (by definition)}$ $= \frac{\Pr\left[\begin{array}{c} 1 = 1 \end{array}\right] \left[\begin{array}{c} 2 = 2 \end{array}\right]}{\Pr\left[\begin{array}{c} 1 = 1 \end{array}\right]} \text{ (by independence)}$

Union Bound



- **Pro**: Works even for dependent variables!
- Con: Sometimes very loose, especially for mutually

Independence and Linearity of Expectation/Variance

• Linearity of expectation (even for dependent variables!):

$$\mathbb{E}\left[\sum_{i=1}^{n}\right] = \sum_{i=1}^{n} \mathbb{E}\left[i\right]$$

Linearity of variance (only for pairwise independent variables!)

$$\left[\sum_{i=1}^{n}\right] = \sum_{i=1}^{n} [i]$$

Part 2: Inequalities

- Markov inequality
- Chebyshev inequality
- Chernoff bound

• For every > 0: $Pr[\ge []] \le \frac{1}{2}$

• Proof (by contradiction) $Pr[\ge []] > \frac{1}{2}$

$$\begin{bmatrix} \end{bmatrix} = \sum \cdot \Pr[\overline{0}] = J \quad \text{(by definition)}$$

$$\geq \sum_{n=1}^{\infty} \cdot \Pr[n] \quad \text{(pick only some i's)}$$

Markov's Inequality

- For every > 0: $Pr[\ge []] \le \frac{1}{2}$
- Corollary (c['] = []): For every ' > 0: $Pr[\ge '] \le \frac{[]}{'}$
- Pro: always works!
- Cons:
 - Not very precise
 - Doesn't work for the lower tail: $Pr[\leq []]$

Chebyshev's Inequality

- For every > 0: $\Pr\left[\left| - \left[\right] \right| \ge \sqrt{\left[\right]} \right] \le \frac{1}{2}$
- Proof: $\Pr\left[\begin{vmatrix} & - & [&] \end{vmatrix} \ge \sqrt{\left[&] \right]} \\
 = & \Pr\left[\begin{vmatrix} & - & [&] \end{vmatrix} ^{2} \ge 2 \\
 & \text{squaring}} \\
 = & \Pr\left[\begin{vmatrix} & - & [&] \end{vmatrix} ^{2} \ge 2 \\
 & \left[\begin{vmatrix} & - & [&] \end{vmatrix} ^{2} \ge 2 \\
 & \left[\begin{vmatrix} & - & [&] \end{vmatrix} ^{2} \right] I \text{ (def. of Varkov's inequality)} \\
 \leq & \frac{1}{2} \\
 & \text{(by Markov's inequality)} \\
 \end{cases}$

Chebyshev's Inequality

• For every > 0: $\Pr\left[\left| - \left[\right] \right| \ge \sqrt{\left[\right]} \right] \le \frac{1}{2}$ • Corollary ('= $\sqrt{\left[\right]}$): For every '> 0: $\Pr\left[\left| - \left[\right] \right| \ge ' \right] \le \frac{\left[\right]}{2}$

Chernoff bound

Let 1... be independent and identically distributed r.vs with range [0,1] and expectation .

• Then if
$$=\frac{1}{2}$$
 and $1 > > 0$,
Pr $\begin{bmatrix} | & - & | \ge & \end{bmatrix} \le 2 \exp\left(-\frac{2}{3}\right)$

Chernoff bound (corollary)

Let 1... be independent and identically distributed r.vs with range [0, c] and expectation .

• Then if
$$=\frac{1}{2}$$
 and $1 > > 0$,
Pr $\begin{bmatrix} | & - & | \ge & \end{bmatrix} \le 2 \exp\left(-\frac{2}{3}\right)$

Chernoff v.s Chebyshev

Large values of t is exactly what we need!

Let $1^{...}$ be independent and identically distributed r.vs with range [0,1] and expectation . Let $=\frac{1}{-1}\sum_{i=1}^{n}$.

• Chebyshev: $\Pr\left[\left| - \right| \ge \right] = \begin{pmatrix} 1 \\ - \end{pmatrix}$ • Chernoff: $\Pr\left[\left| - \right| \ge \right] = -\Omega()$

So is Chernoff always better for us?

Vos if wo havo i i d variables

Answers to the puzzles

You see a sequence of values 1, ..., , arriving one by one:

- (Easy)
 - If all ' are different and have values between 1 and +1, which value is missing?
 - You have (log) space

- Answer: missing value =
$$\sum_{i=1}^{n} - \sum_{i=1}^{n}$$

- (Harder)
 - How can you maintain a uniformly random sample of values out of those you have seen so far?

Part 3: Morris's Algorithm

- (Very hard, "Count the number of players")
 - What is the total number of values up to error
 ± ?
 - You have (log log / ²) space and can be completely wrong with some small probability

Maintains a counter using $log \overline{log} g$ bits

- Initialize to 0
- When an item arrives, increase X by 1 with probability $\frac{1}{2}$
- When the stream is over, output 2 1

Claim:
$$[2] = +1$$

Maintains a counter using $log \overline{log} g_{f_0}$ bits

- Initialize to 0, when an item arrives, increase X by 1 with probability $\frac{1}{2}$ Claim: $\begin{bmatrix} 2 \end{bmatrix} = +1$
- Let the value after seeing items be $\begin{bmatrix} 2 \end{bmatrix} = \sum_{n=0}^{\infty} \Pr[f_n] = \prod_{n=1}^{\infty} [2 | -1] = \prod_{n=1}^{\infty} [2 | -1]$

Initialize to 0, when an item arrives, increase X by 1 with • probability $\frac{1}{2}$ Claim: $\begin{bmatrix} 2^2 \end{bmatrix} = \frac{3}{2} + \frac{3}{2} + \frac{3}{2} + 1$ $\begin{bmatrix} 2^2 \end{bmatrix} = \sum \Pr[2]^2 - 1 = \begin{bmatrix} 2^2 & 2 \\ -1 \end{bmatrix} \begin{bmatrix} 2^2 & 2 \\ -1 \end{bmatrix}$ = 0 $\Pr[2]_{-1} = J\left(\frac{1}{-4} + 2 + \left(1 - \frac{1}{-1}\right)^2\right)$

Maintains a counter using $log \overline{log} g_{\overline{fo}}$ bits

- Initialize to 0, when an item arrives, increase X by 1 with probability $\frac{1}{2}$
- [2] = n + 1, [2] = (2)
- Is this good?

Morris's Algorithm: Beta-version

- Maintains counters ¹, ..., using $log[\underline{fo}]g[\underline{fo}]$ bits for each
- Initialize ' to 0, when an item arrives, increase each by 1 independently with probability $\frac{1}{2}$

• Output Z =
$$\frac{1}{2} \left(\sum_{i=1}^{n} 2 - 1 \right)^{i}$$

• $[2] = n + 1, [2] = (2)^{i}$
 $(1 \sum 2)^{i} (2)^{i}$

Morris's Algorithm: Beta-version

- Maintains counters ¹, ..., using $log \underline{log} g$ bits for each
- Output Z = $\frac{1}{2}(\sum_{i=1}^{n} 2 1)$ • $\begin{bmatrix} \end{bmatrix} = \begin{pmatrix} \frac{1}{2} \sum_{i=1}^{n} 2^{i} - 1 \end{pmatrix} = \begin{pmatrix} \frac{2}{2} \\ - \end{pmatrix}$ • Claim: If $\geq -\frac{1}{2}$ then $\Pr\left[\left| - \right| > \right] < 1/3$ r_1 (2)

Morris's Algorithm: Final

- What if I want the probability of error to be really small, i.e. Pr [| |>] ≤ ?
- Same Chebyshev-based analysis: $=\left(\frac{1}{2}\right)$

• Do these steps
$$= \left(\log \frac{1}{2}\right)$$
 times

independently in parallel and output the median answer.

$$\left(\log \log \cdot \log \frac{1}{2}\right)$$

• Total chacos

Morris's Algorithm: Final

• Do these steps $= \left(\log \frac{1}{2}\right)$ times independently in parallel and output the median answer .

Maintains counters ¹, ..., using $log \underline{log} g_{f_0}$ bits for each

• Initialize ' to 0, when an item arrives, increase each by 1 independently with probability $\frac{1}{2}$

Morris's Algorithm: Final Analysis

- Claim: $\Pr[| | >] \leq$
- Let be an indicator r.v. for the event that $\begin{vmatrix} \\ \end{vmatrix} \le d$, where is the i-th trial.
- Let $= \sum_{i=1}^{n}$.
- $\Pr\left[\left| \right| > \right] \le \Pr\left[\le \frac{1}{2} \right]$

Thank you!

- Questions?
- Next time:

- More streaming algorithms