
CIS 700:
“algorithms for Big Data”

Grigory Yaroslavtsev
http://grigory.us

Lecture 1: Intro
Slides at http://grigory.us/big-data-class.html

http://grigory.us/
http://grigory.us/big-data-class.html

Disclaimers

• A lot of Math!

Disclaimers

• (Almost) no programming!

Class info

• MW 10:30 – 12:00, Towne 307
• Grading:
– 1-2 homework assignments (40%)
– Project (60%)

• Office hours by appointment
• Slides will be posted

What is this class about?

• Not about the band
(https://en.wikipedia.org/wiki/Big_Data_(band))

https://en.wikipedia.org/wiki/Big_Data_(band)

What is this class about?
• The four V’s: volume, velocity, variety, veracity
• Volume: “Big Data” = too big to fit in RAM
– Today 16GB ≈ 100$ => “big” starts at terabytes

• Velocity: real-time
– Doesn’t fit in RAM + has to be processed on the fly

• N = size of data, time and memory o(N)
• o(N): � 1 ,	�(logN) ,�(��) where 0 < � < 1

• Cloud computing platforms (all offer free trials):
– Amazon EC2 (1 CPU/12mo)
– Microsoft Azure ($200/1mo)
– Google Compute Engine ($200/2mo)

• Distributed Google Code Jam
– First time in 2015:

https://code.google.com/codejam/distributed_index.html
– Caveats:

• Very basic aspects of distributed algorithms (few rounds)
• Small data (~1	��, with hundreds MB RAM)
• Fast query access (~0.01	�� per request), “data with queries”

Getting hands dirty

https://code.google.com/codejam/distributed_index.html

Outline

• Part 1: Streaming Algorithms
Highlights:
• Approximate counting
• # Distinct Elements,

Hyperloglog
• Median
• Frequency moments
• Heavy hitters
• Graph sketching

Outline

• Part 2: Algorithms for numerical linear algebra
Highlights:
• Dimension reduction
• Nearest neighbor

search
• Linear sketching
• Linear regression
• Low rank

approximation

Outline

• Part 3: Massively Parallel Algorithms
Highlights:
• Computational Model
• Sorting (Terasort)
• Connectivity, MST
• Filtering dense graphs
• Euclidean MST

Outline

• Part 4: Sublinear Time Algorithms

Highlights:
• “Data with queries”
• Sublinear approximation
• Property Testing
• Testing images,

sortedness,
connectedness

• Testing noisy data

Today

Puzzles

You see a sequence of values �1,	…,	��, arriving one
by one:
• (Easy, “Find a missing player”)
– If all �′

�
� are different and have values between 1 and

� + 1, which value is missing?
– You have �(log �) space

• Example:
– There are 11 soccer players with numbers 1, …, 11.
– You see 10 of them one by one, which one is missing?

You can only remember a single number.

1

8

5

11

3

9

2

6

7

4

Which number was missing?

Puzzle #1

You see a sequence of values �1,	…,	��, arriving one
by one:
• (Easy, “Find a missing player”)
– If all �′

�
� are different and have values between 1 and

� + 1, which value is missing?
– You have �(log �) space

• Example:
– There are 11 soccer players with numbers 1, …, 11.
– You see 10 of them one by one, which one is missing?

You can only remember a single number.

Puzzle #2

You see a sequence of values �1,	…,	��, arriving
one by one:
• (Harder, “Keep a random team”)
– How can you maintain a uniformly random sample

of � values out of those you have seen so far?
– You can store exactly � items at any time

• Example:
– You want to have a team of 11 players randomly

chosen from the set you have seen.
– Players arrive one at a time and you have to

decide whether to keep them or not.

Puzzle #3

You see a sequence of values �1,	…,	��, arriving
one by one:
• (Very hard, “Count the number of players”)
–What is the total number of values up to error
± ��?

– You have �(log log � / �2) space and can be
completely wrong with some small probability

Puzzles

You see a sequence of values �1,	…,	��, arriving one by one:
• (Easy, “Find a missing player”)
– If all �′

�
� are different and have values between 1 and � + 1,

which value is missing?
– You have �(log �) space

• (Harder, “Keep a random team”)
– How can you maintain a uniformly random sample of � values

out of those you have seen so far?
– You can store exactly � items at any time

• (Very hard, “Count the number of players”)
– What is the total number of values up to error ± ��?
– You have �(log log � / �2) space and can be completely

wrong with some small probability

Part 1: Probability 101

“The bigger the data the better you should know
your Probability”
• Basic Probability:
– Probability, events, random variables
– Expectation, variance / standard deviation
– Conditional probability, independence, pairwise

independence, mutual independence

Expectation

• � = random variable with values �1,…,	��,	…
• Expectation 피 �

피 � =∑
� = 1

∞

xi	 ⋅ Pr[� = �
�
]

• Properties (linearity):
피 �� = �피 �

피 � + � = 피 �] + 피[�
• Useful fact: if all �

�
≥ 0 and integer then

피 � =∑
� = 1

∞

Pr[� ≥ �]

Variance

• Variance ��� � = 피[(X − 피[X])2]

��� � = 피[(X − 피[X])2] =
= 피 �2	 − 2	� ⋅ 피[X] + 피[X]2

= 피[�2] − 2피[� ⋅ 피[X]] + 피[피[X]2]

• 피[X] is some fixed value (a constant)
• 2 피[� ⋅ 피[X]] = 2 피[X] ⋅ 피[X] = 2	피2[�]
• 피[피[X]2] = 	피2[X]

Independence

• Two random variables � and � are independent if
and only if (iff) for every �,	�:

Pr � = �,	� = � = Pr � = � ⋅ Pr[� = �]
• Variables �1,…,	�� are mutually independent iff

Pr �� = �1,	…,�� = �� = ∏
� = 1

�

Pr �
�
= �
�

• Variables �1,…,	�� are pairwise independent iff for
all pairs i,j
Pr �

�
= �
�
,	�
�
= �
�
= Pr �

�
= �
�

Pr �
�
= �
�

Conditional Probabilities

• For two events �1 and �2:

Pr �2|�1 =
Pr[�1	���	�2]

Pr[�1]
• If two random variables (r.vs) are independent
Pr �2 = �2|�1 = �1

=
Pr[�1 = �1	���	�2 = �2]

Pr �1 = �1
		(by definition)

=
Pr �1 = �1 �� �2 = �2

Pr[�1 = �1]
	 (by independence)

= Pr[�2 = �2]

Union Bound

For any events �1,	…,	��:
Pr �1��	�2	��…��	�� ≤ Pr �1 + Pr �2 + …

+ Pr[�
�
]

• Pro: Works even for dependent variables!
• Con: Sometimes very loose, especially for mutually

Independence and Linearity of
Expectation/Variance

• Linearity of expectation (even for dependent
variables!):

피 ∑
� = 1

�

�
�
=∑
� = 1

�

피[�
�
]

• Linearity of variance (only for pairwise independent
variables!)

��� ∑
� = 1

�

�
�
=∑
� = 1

�

���[�
�
]

Part 2: Inequalities

• Markov inequality
• Chebyshev inequality
• Chernoff bound

Markov’s Inequality

• For every � > 0:			Pr � ≥ �	� � ≤
1
�

• Proof (by contradiction) Pr � ≥ �	� � >
1
�
	

� � =∑
�

� ⋅ Pr[� = �]																		(by definition)

≥ 	 ∑
� = �� �

∞

� ⋅ Pr � = � (pick only some i’s)

Markov’s Inequality

• For every � > 0:			Pr � ≥ �	� � ≤
1
�

• Corollary (c′ = �	� �)	:

For every �′ > 0:	Pr � ≥ �′	 ≤
� �

�′

• Pro: always works!
• Cons:
– Not very precise
– Doesn’t work for the lower tail: Pr � ≤ �	� �

Chebyshev’s Inequality

• For every � > 0:

Pr �	 − � � ≥ �	 ��� � ≤
1
�2

• Proof:

Pr �	 − � � ≥ �	 ��� �
= 	 Pr �	 − � � 2 ≥ �2��� � (by

squaring)
= Pr �	 − � � 2 ≥ �2�[�	 − � � 2]	(def.	of	Var)

≤
1
�2
	 (by Markov’s inequality)

Chebyshev’s Inequality

• For every � > 0:

Pr �	 − � � ≥ �	 ��� � ≤
1
�2

• Corollary (�′ = �	 ��� �):
For every �′ > 0:

Pr �	 − � � ≥ �′ ≤
��� �

�′2

Chernoff bound

• Let �1…�� be independent and identically
distributed r.vs with range [0,1] and
expectation �.

• Then if � =
1
�
∑
�

�
�
 and 1 > � > 0,

Pr �	 − � ≥ �� ≤ 2 exp −
���2

3

Chernoff bound (corollary)

• Let �1…�� be independent and identically
distributed r.vs with range [0, c] and
expectation �.

• Then if � =
1
�
∑
�

�
�
 and 1 > � > 0,

Pr �	 − � ≥ �� ≤ 2 exp −
���2

3�

Chernoff v.s Chebyshev

Large values of t is exactly what we need!

Let �1…�� be independent and identically distributed r.vs with

range [0,1] and expectation �. Let � =
1
�
∑
�

�
�
.

• Chebyshev: Pr �	 − � ≥ � =�
1
�

• Chernoff: Pr �	 − � ≥ � = � −Ω(�)

So is Chernoff always better for us?
• Yes, if we have i.i.d. variables.
• No, if we have dependent or only pairwise independent

random varaibles.
• If the variables are not identical – Chernoff-type bounds exist.

Answers to the puzzles
You see a sequence of values �1,	…,	��, arriving one by
one:
• (Easy)
– If all �′

�
� are different and have values between 1 and � + 1,

which value is missing?
– You have �(log �) space

– Answer: missing value = ∑
� = 1

�

�	 −∑
� = 1

�

�
�

• (Harder)
– How can you maintain a uniformly random sample of �

values out of those you have seen so far?
– You can store exactly � values at any time

– Answer: Store first �1,…,	��. When you see �
�
 for � > �,

with probability S / � replace random value from your
storage with �

�
.

Part 3: Morris’s Algorithm

• (Very hard, “Count the number of players”)
–What is the total number of values up to error
± ��?

– You have �(log log � / �2) space and can be
completely wrong with some small probability

Morris’s Algorithm: Alpha-version

Maintains a counter � using loglog� bits
• Initialize � to 0
• When an item arrives, increase X by 1 with

probability
1
2�

• When the stream is over, output 2� − 1

Claim: � 2� = � + 1

Morris’s Algorithm: Alpha-version

Maintains a counter � using loglog� bits
• Initialize � to 0, when an item arrives, increase X

by 1 with probability
1
2�

Claim: � 2� = � + 1
• Let the value after seeing � items be �

�

� 2�� =∑
� = 0

∞

Pr[�
� − 1 = �]� 2

�
�|�� − 1 = �

= 	 ∑
� = 0

∞

Pr[�
� − 1 = �]

1
2�
	2� + 1 + 1	 −

1
2�
2�

=∑
� = 0

∞

Pr[�
� − 1 = �] 2

� + 1 	 = 1 + � 2�� − 1

Morris’s Algorithm: Alpha-version

Maintains a counter � using loglog� bits

• Initialize � to 0, when an item arrives, increase X by 1 with

probability
1
2�

Claim: � 22� =
3
2
�2 +

3
2
� + 1

� 22�� =∑
� = 0

∞

Pr[2�� − 1 = �]� 22��|2�� − 1 = �

= ∑
� = 0

∞

Pr[2�� − 1 = �]
1
�
	4	�2 + 1	 −

1
�
�2

Morris’s Algorithm: Alpha-version

Maintains a counter � using loglog� bits
• Initialize � to 0, when an item arrives, increase

X by 1 with probability
1
2�

• �[2�] = n + 1, ��� 2� =� �2
• Is this good?

Morris’s Algorithm: Beta-version

Maintains � counters �1,	…,�� using loglog� bits
for each
• Initialize ��′� to 0, when an item arrives, increase

each �� by 1 independently with probability
1

2��

• Output Z = 	
1
�
(∑
� = 1

�

2��	 − 1)		

• �[2��] = n + 1, ��� 2�� =� �2

• ��� � = ���	
1
�
∑
� = 1

�

2�� − 1 =�
�2

�
	

• Claim: If � ≥
�

�2
 then Pr �	 − � > �� < 1 / 3

Morris’s Algorithm: Beta-version

Maintains � counters �1,	…,�� using loglog� bits
for each

• Output Z = 	
1
�
(∑
� = 1

�

2��	 − 1)		

• ��� � = ���	
1
�
∑
� = 1

�

2�� − 1 =�
�2

�
	

• Claim: If � ≥
�

�2
 then Pr �	 − � > �� < 1 / 3

– Pr �	 − � > �	� <
���[�]
�2�2

=�
�2

�
⋅
1
�2�2

– If � ≥
�

�2
 we can make this at most

1
3

Morris’s Algorithm: Final

• What if I want the probability of error to be
really small, i.e. Pr �	 − � > �	� ≤ �?

• Same Chebyshev-based analysis: � =�
1
�2�

• Do these steps � =� log
1
�

 times

independently in parallel and output the
median answer.

• Total space: �
log log � ⋅ log

1
�

�2

Morris’s Algorithm: Final

• Do these steps � =� log
1
�

 times

independently in parallel and output the median
answer ��.

Maintains � counters �1,	…,�� using loglog� bits
for each
• Initialize ��′� to 0, when an item arrives, increase

each �� by 1 independently with probability
1

2��

• Output Z = 	
1
�
(∑
� = 1

�

2��	 − 1)		

Morris’s Algorithm: Final Analysis

Claim: Pr ��	 − � > �	� ≤ �
• Let �

�
 be an indicator r.v. for the event that

�
�
	 − � ≤ ��, where �

�
 is the i-th trial.

• Let � = ∑
�

�
�
.

• Pr �� − � > �� ≤ Pr � ≤
�

2

Thank you!

• Questions?
• Next time:
–More streaming algorithms

