Taylor Polynomials and Taylor's Inequality <u>Calculus: 2nd Edition</u> by Dennis Berkey

1a. Find the 3rd order Taylor polynomial for f(x) = ln(x + 1) centered at x = 0.
b. Then find the Lagrange Error Bound when x = .2

2a. Find the 3rd order Taylor polynomial for $f(x) = e^x$ centered at x = 0.

b. Then use Taylors Inequality to find $f(.4) - P_3(.4) \le R$ at x = .4

3a. Find the 3rd order Taylor polynomial for $f(x) = \sin x$ centered at $x = \frac{\pi}{6}$. b. Then use the Remainder Estimation Thm to find $|f(x) - P_1(x)| \le R$ at $x = 32^\circ$

4a. Find the 2nd order Taylor polynomial for $f(x) = \cos x$ centered at $x = \frac{\pi}{4}$.

b. Then use the Remainder Estimation Thm to find $f(x) - P_2(x) \le R$ at $x = 42^\circ$

5a. Find the 3rd order Taylor polynomial for f(x) = arcsin x centered at x = 0.
b. Then find the Lagrange Error Bound when x = .2

6a. Find the 1st order Taylor polynomial for $f(x) = \frac{\ln x}{x}$ centered at x = 1.

b. Then use Taylors Inequality to find $f(1.2) - P_1(1.2) \le R$ at x = 1.2

7a. Find the 1st order Taylor polynomial for $f(x) = xe^{-2x}$ centered at x = 0.

b. Then use Taylors Inequality to find
$$f(.2) - P_3(.2) \le R$$
 at $x = .2$

8*a*. Find the 1st order Taylor polynomial for $f(x) = \sqrt{3 + x^2}$ centered at x = 1*b*. Then find the Lagrange Error Bound when x = 1.2 Determine a bound on the accuracy of the given approximation for the indicated range of x

9.
$$\sin x \approx x$$
, $|\mathbf{x}| < .05$
10. $\sin x \approx x - \frac{x^3}{3!}$, $|\mathbf{x}| < .15$
11. $\cos x \approx \frac{1}{2} - \frac{\sqrt{3}}{2} \left(x - \frac{\pi}{3} \right)$, $|\mathbf{x} - \frac{\pi}{3}| < .05$
12. $\tan x \approx 1 + 2 \left(x - \frac{\pi}{4} \right)$, $|\mathbf{x} - \frac{\pi}{4}| < \frac{\pi}{36}$
13. $\sqrt[3]{1 + \mathbf{x}} \approx 1 + \frac{x}{3}$, $|\mathbf{x}| < .025$
14. $\ln x \approx (\mathbf{x} - 1) - \frac{1}{2} (\mathbf{x} - 1)^2 + \frac{1}{3} (\mathbf{x} - 1)^3$, $|\mathbf{x} - 1| < ..1$
15. $\sqrt{1 + \mathbf{x}} \approx 1 + \frac{x}{2}$, $0 < \mathbf{x} < .02$