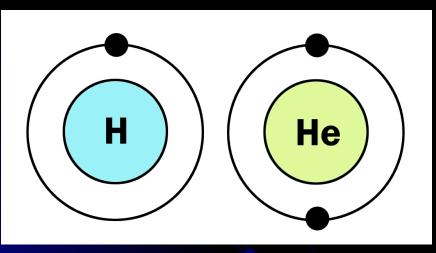

Ibe Big Balle

Evidence of creation and expansion of the Universe through <u>Background Radiation</u> and Investigating <u>Spectra (color)</u>

The Big Bang Video Link


Scientists have evidence that the universe is <u>13.7 billion</u> years old

But it all came from one point....the big bang!

The Big Bang Theory

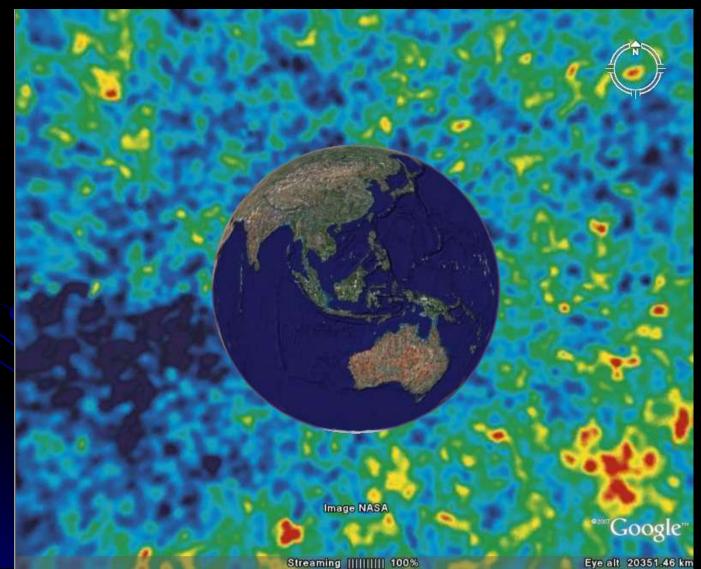
- States that all matter and energy started out concentrated in a small area, smaller than an atom
- After Gigantic Explosion, matter organized itself into subatomic particles and later atoms
- The first atoms to form were Hydrogen and Helium

, Ч					P	erio	dic T	able	of th	e Ele	emen	ts					¹⁸ He
Hydrogen 1.01 3	2											13	14	15	16 8	17	Helium 4.00
Li Lithium 6.94	Be Berylliun 9.01											B Boron 10.81	C Garbon 12.01	N Kitrogen 14.01	O Oxygen 16.00	F Aucrine 19.00	Ne Kem 20.18
11 Na Sodium 22.99	12 Mg Nagnesium 24.31	3	4	5	6	7	8	9	10	11	12	13 Al Aluninum 26.98	Silicon 28.09	15 P Phosphorus 30.97	16 S Sultur 32.06	17 Cl Chlorine 35.45	18 Ar <i>h</i> rgon 39.95
Potassium 39.10	20 Ca Cakium 40.08	21 Sc Scandium 44.96	22 Ti Titariun 47.88	23 V Vanadium 50.94	24 Cr Chromiun 51.99	25 Mn Marganese 54.94	26 Fe	27 Co Gabat 58.93	28 Ni Nidal 58.69	29 Cu 63,55	30 Zn 2inc 65.38	31 Ga Gallium 69.72	32 Ge Gemariun 72.63	33 As Arsenic 74.92	34 Se Selenium 78.97	35 Br Bromine 79.90	36 Kr Knpton 84.80
37 Rb Rutidium 85.47	38 Sr Stortium 87.62	39 Y Yttriun 88.91	40 Zr Zirconium 91,22	41 Nb Nichium 92.91	42 Mo Molybdenum 95.95	43 TC Technetium 98.91	44 Ru Ruthenium 101.07	45 Rh Rhodium 102.91	46 Pd Paladium 105.42	47 Ag 5ilver 107.87	48 Cd Gdmium 112,41	49 In Indian 114.82	50 Sn 118.71	51 Sb Antimony 121.76	52 Te Tellurium 127.6	53 lodine 126.90	54 Xe Xenon 131,29
55 CS (esium 132.91	56 Ba Barium 137.33	57-71 Lanthanides	72 Hf Hafnium 178,49	73 Ta Tantalum 180.95	74 W Turgsten 183.85	75 Re Rhenium 186.21	76 Os Osmiun 190.23	77 Ir Indium 192.22	78 Pt Platinum 195.08	79 Au 698 196.97	80 Hg Mercury 200.59	81 TI Thalium 204.38	82 Pb Lead 207.20	83 Bi Bismuth 208.98	84 Po Polorium [208.98]	85 At Astatine 209.98	86 Rn Radon 222.02
87 Fr Francium 223.02	88 Ra Radium 226.03	89-103 Actinides	104 Rf Intherfordum [261]	Ďb	106 Sg Seaborgium [266]	107 Bh Bohrium [264]	108 Hs Hassium [269]	109 Mt Neitnerium [278]	110 Ds	¹¹¹ Rg	112 Cn © Copernicium [285]	¹¹³ Nh	114 FI Rerovium [289]	115 Mc Moscowium [289]	116 LV Livernarium [293]	117 Ts	Ög
		5	7.5	8	59 64	. 6	1	62 6	3		65	56 (57 (8 6		0 1	71
				140.12	rasodymium Ne 140.91	odymium Pi 144.24	Pm onethiun 144.91	150.36	Eu Erropiun 151.96	Gd Gadolinium 157.25	158.93	Dy Dysprosium 162.50	Ho Holmium 164.93	Er Erbium 167.26	168.93	Yb Ytterbium 173.06	LU Lutetium 174.97
			Ac	Th		U Jranium N	3 Np leptunium 237.05		Americium 243.06	96 Cm (urium 247.07	Bk	Cf	9 Es Einsteiriun [254]	Fm Fermiun M	Md	No	Lawrencium [262]
	C	Alkali Metal	Alkaline	Earth Tr	ansition Metal	BasicM	etal	Metalloid	Konm	etal	Halogen	Noble (ias La	inthanide	Actinió		
	C	Alkali Metal	Alkaline	Earth Tr	ansition Metal	BasicM	etal	Metalloid	Konm	etal	Halogen	Noble (ias La	nthanide	Actinió		2017 Tabli Belivescilse schercessian alg

What needed to change in order for the creation of atoms (combining of electrons, protons and neutrons)?

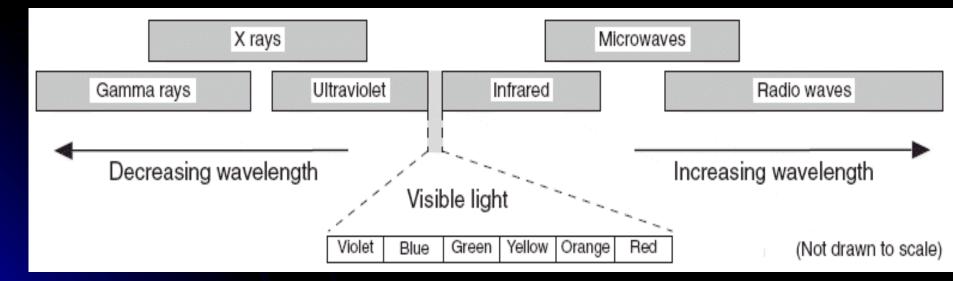
Data Table

Stage	Description of the Universe	Average Temperature of the Universe (°C)	Time From the Beginning of Universe
1	the size of an atom	?	0 second
2	the size of a grapefruit	?	10 ⁻⁴³ second
3	"hot soup" of electrons	10 ²⁷	10 ⁻³² second
4	Cooling allows protons and neutrons to form.	10 ¹³	10 ⁻⁶ second
5	still too hot to allow the forming of atoms	10 ⁸	3 minutes
6	Electrons combine with protons and neutrons, forming hydrogen and helium atoms. Light emission begins.	10,000	300,000 years
7	Hydrogen and helium form giant clouds (nebulae) that will become galaxies. First stars form.	-200	1 billion years
8	Galaxy clusters form and first stars die. Heavy elements are thrown into space, forming new stars and planets.	-270	13.7 billion years

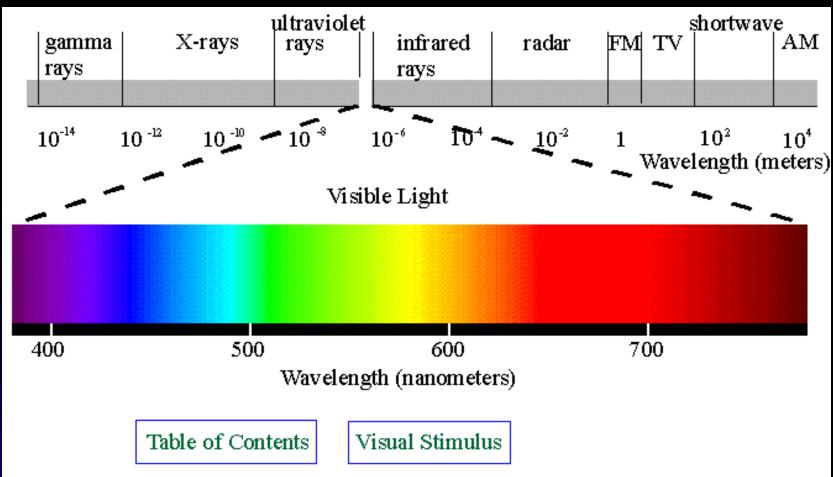

Where is our evidence for this Theory?

- 1.) Energy created by this explosion expanded along with the matter
- This radiation has been traveling outwards in the universe and cooling over billions of years, but can still be measured and observed.
- This original radiation is called:

Cosmic background radiation (CMB) which is longwave microwave radiation that appears to be coming from everywhere in the universe!

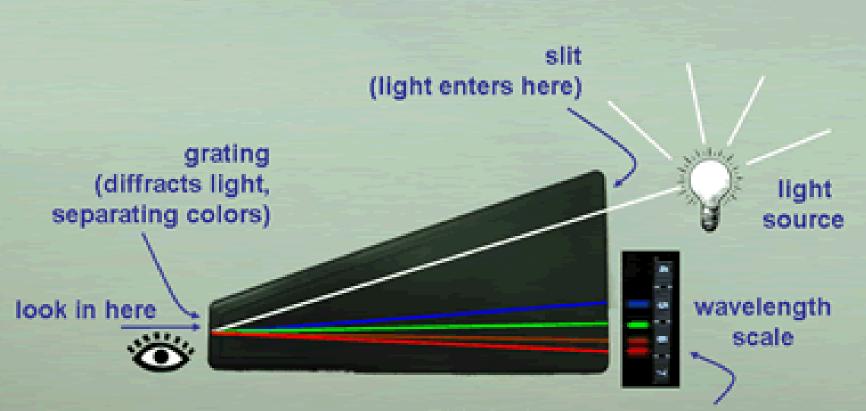

Cosmic Background Microwave Radiation

Cosmic Background Radiation Video Link



2.) **Red Shift** Exhibited by observing the spectrum of distant galaxies and stars over time

 pg. 14 of your ESRT displays the electromagnetic spectrum, or all energy produced by the sun and transmitted through radiation



Red= longest wavelength Violet/Blue= shorter wavelengths Analyzing Red Shift in Stars video link

Understanding the Spectrum

- Each <u>element</u> in the universe emits energy in <u>different wavelengths</u>
- The human eye observes <u>different wavelengths</u> of visible light in the form of <u>COLORS</u>
- We can look at the spectral signatures of stars and infer 2 things:
- 1.) Their Composition; which elements they are composed of
- 2.) If they are moving towards or away from us (if the spectral lines shift position with time)

This is the spectrum you would observe if you used a spectroscope to look at a white computer screen.

How a spectroscope works

This is what lithium gas in a tube would look like through a spectroscope (The lines or "signature" tell us this is Lithium)

Each element has its own "spectrum" of color. If we saw this signature in a distant galaxy, we would know that lithium existed there

The Doppler Effect Explained (video link)

- The position of wavelengths (spectral lines), are shifted to either the
- 1.)shorter wavelength/BLUE side or to the
- 2.)longer wavelength/RED side.
- Because the universe is <u>expanding</u>, objects that are moving <u>apart</u> from one another will cause the wavelengths of energy to <u>stretch</u> or become <u>longer</u>, causing what's known as a RED SHIFT
- MOST GALAXIES SHOW A RED SHIFT

Rec

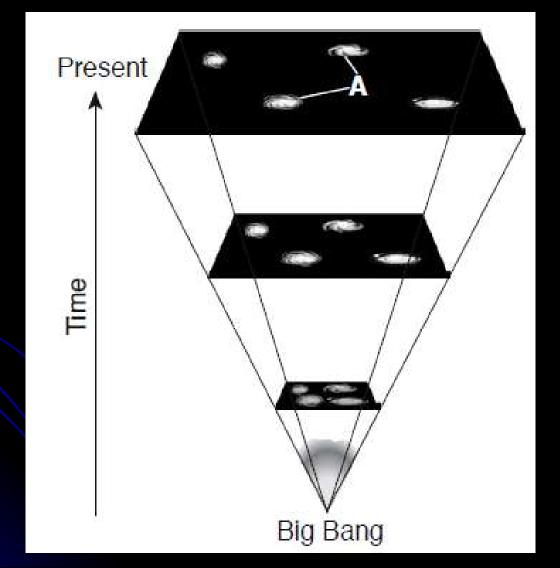
If the object were moving TOWARD us, the spectral lines would shift left (toward violet/blue end of the spectrum)

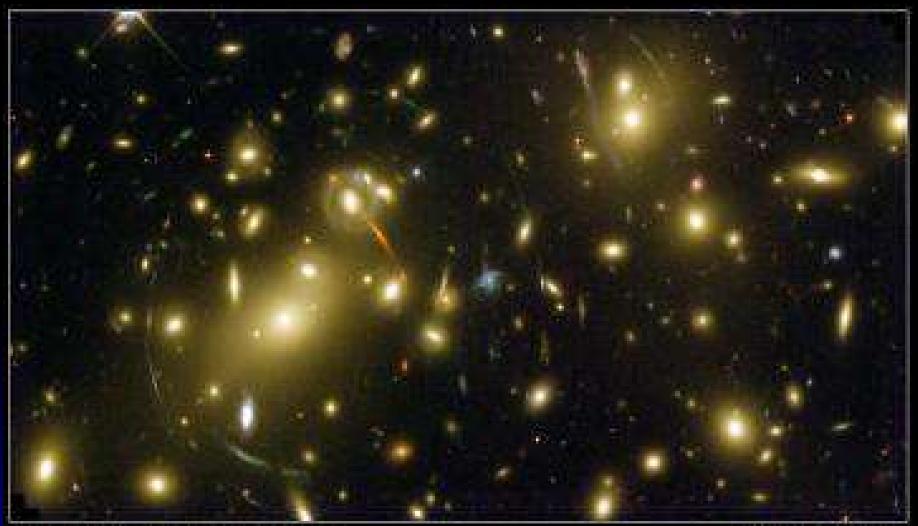
Violet		Red

If the object were moving AWAY from us, the spectral lines would shift right (toward red end of the spectrum)

Violet	 	Red

UNSHIFTED


REDSHIFTED


Are there any galaxies that would appear to have a blue shift?

- <u>The Andromeda galaxy</u> will merge with ours in the future
 - It's spectra is thus blue-shifted with time
- Hubble's Law : States the Universe is Expanding!
- The faster it's expanding, the greater the red shift (further the spectral lines are shifted in the spectrum)!

Expansion of Universe Galaxies move further apart over time

Part II: GALAXIES

Galaxy Cluster Abell 2218 NASA, A. Fruchter and the ERO Team (STScl. ST-ECF) • STScl-PRC00-08 HST • WFPC2

A <u>Galaxy:</u> is a collection of billions of stars

- Stars and gases are held together by gravity
- An Average galaxy will have over 100 billion stars
 - Each star (or two) with its own planetary system

 Estimated to be over 100 billion galaxies in the universe!

Galaxies are categorized by shape into 3 types

●1.) Elliptical (round→football shaped)

•Make up 60% of galaxies in the universe

I ittle to no star formation and little rotation

2.) Spiral Shaped Galaxies Sub groups are Spiral vs. Barred Spiral

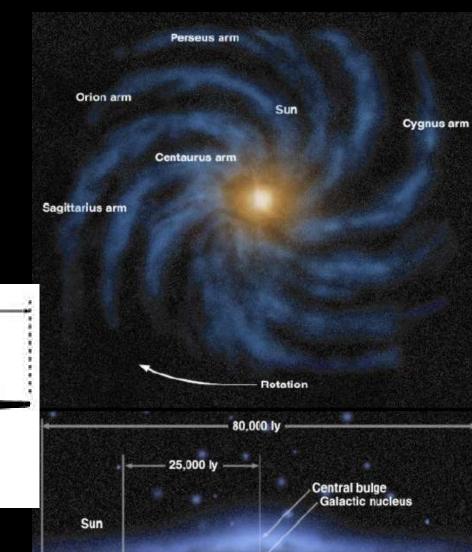
- 30% of galaxies , contain very old and new stars
- Average size is very large
 (25-125 thousand
 light years across!)

-Australian Observatory

3.) Irregular Galaxies

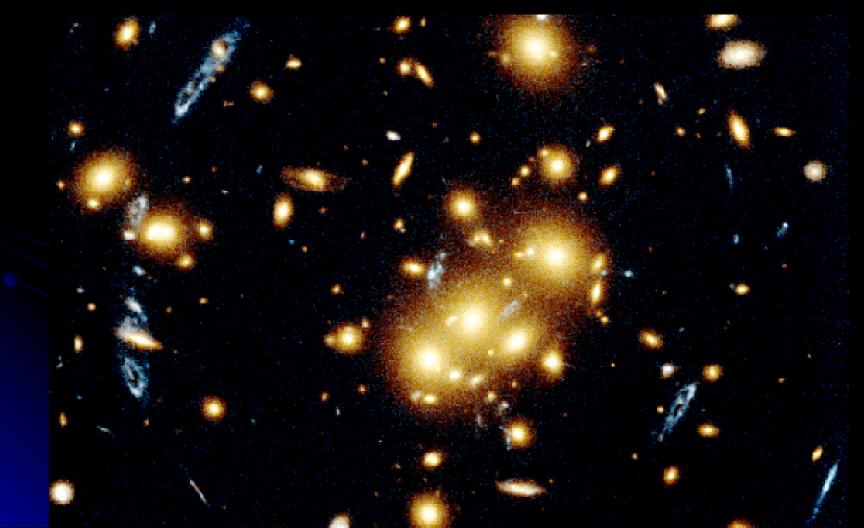
10% of galaxies form "irregular galaxies" They have no known shape Also contain large amounts of NEW stars

Our Galaxy: The Milky Way


We are a spiral galaxy located on the outer edge of one of the galactic arms!

100,000 Light Years

Galactic Bulge


SUN

27,000 Light Years

Disk

Galaxy Clusters Like stars, galaxies can also be in clusters!

Hubble Space Telescope Gallery