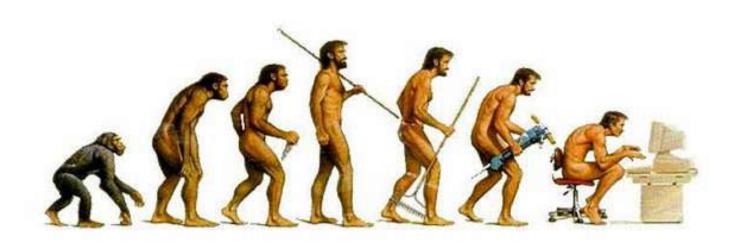
Natural Selection

Mr. Modafferi


Do Now

• Define Natural Selection


Theory of Natural Selection

 Organisms better adapted to the environment are "selected" and survive, passing on their favorable traits to their offspring

Species evolve over time

Example of Evolution:

Think

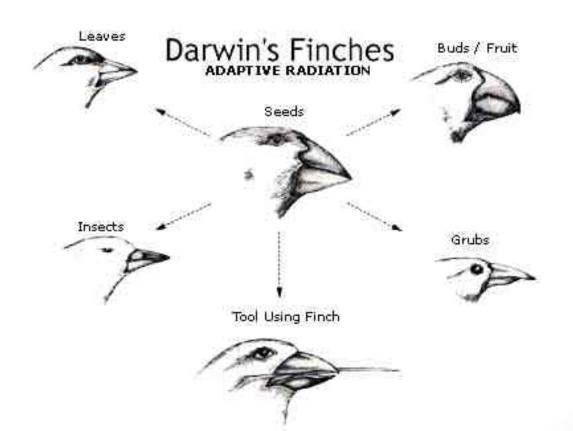
- What are some reasons for a species to change over time?
- What environment factors would affect a organism's population?

6 Points of Darwin's Theory

- 1) Competition
- 2) Overpopulation
- 3) Speciation
- 4) Variations
- 5) Adaptations
- 6) Natural Selection

Competition

- Organisms compete for a finite supply of the resources
 - Example : food, water, shelter
- Competition keeps the population under control


Overpopulation

 All organisms produce more offspring than can survive

Speciation = New Species!

 Eventually a new species will develop as variations accumulate in a population over many generations.

Variations - Differences

- Differences among organisms of the same species
 - Differences in the ability:
 - to get food
 - to escape enemies
 - to find a mate

Araschnia levana

Adaptation

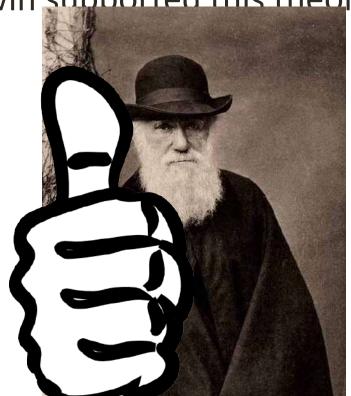
• Inherited traits that enable an organism to survive

Natural Selection

- The environment "Selects" organisms with optimal traits to be parents of the next generation.
- SURVIVAL OF THE FITTEST

Do Now

• Please complete "A Close Look at Darwin's Finches" worksheet


Rate of Evolution

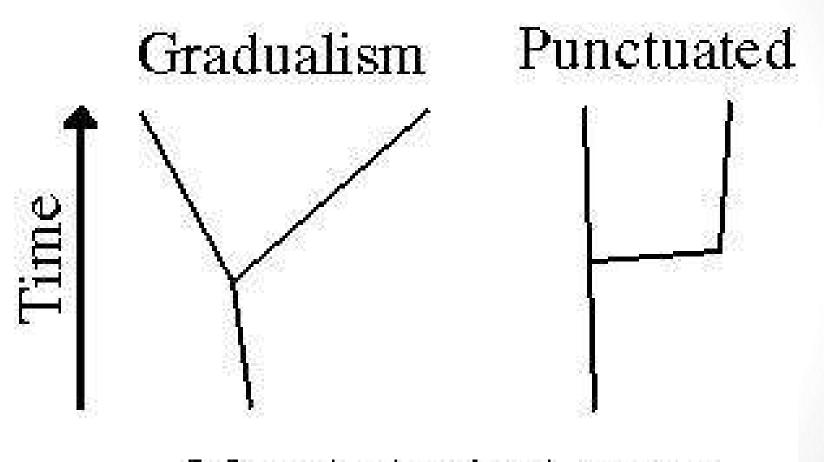
- 2 Models of Evolution:
- Gradualism
- Punctuated Equilibrium

Gradualism

- Belief that species arose gradually over time
 - Thousands and even millions of years

Darwin supported this theory

Punctuated Equilibrium


- States that a species stays the same for extended periods of time
- Then, over the course of a few hundred years rapid changes take place
- PE is supported by the fossil record because there are few transitional forms

Punctuated Equilibrium

Table 15.1
Fossils are used by scientists to understand how camels evolved.

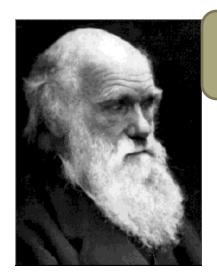
Age	Paleocene 65 million years ago	Eocene 54 million years ago	Oligocene 33 million years ago	Miocene 23 million years ago	Present
Organism					M
Skull and teeth		200	B B	The Man	
Limb bones				T.	

Gradualism Vs. PE

Morphological space

Gradualism Vs. PE

Question of the Day


- How would Darwin account for the long neck of giraffes?
- HINT: Think of Natural Selection

Modern Theory of Evolution

- Evolution happens to populations, not to individual organisms
- The modern theory combines genetics with Darwin's findings.

A Weakness of Darwin's Theory of Natural Selection?

- He does not explain the genetic basis for variations within a species
 - How exactly did the traits get passed onto the offspring?

OH SNAP!

Population Genetics

- A population is a group of organisms that belong to the same species; each organism has its distinct genetic make-up
- The genetic make-up of the population changes over time, and this allows the population to evolve

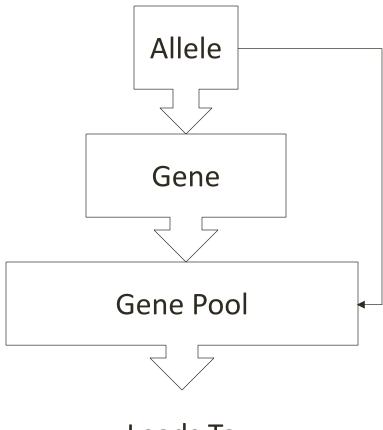
Same Species
Different Genetic
Make-up

How does this genetic change occur?

- An allele is a form of a specific gene
 - Ex: eye color
- In a population, there are many different alleles

Cont.

- The total of ALL the alleles present in a population is called the **gene pool**
- Over time, the allele frequencies found in the gene pool change as a result of natural selection
- Therefore, evolution is the gradual change of all the allele frequencies found in a population


Gene Pool

Gene Pool - After Natural Selection

EVOLUTION!!

Leads To

EVOLUTION

Exit Slip

- Please write down on a separate piece of paper
 - 3 things you learned
 - 2 things you found interesting
 - 1 question you still have

Do Now

How do variations in a gene pool occur?

- Biologists can explain how variations occur
- The two main sources of genetic variation are:
 - Mutations
 - Gene Shuffling

Genetic Sources of Variation

- Hugo De Vries introduced the idea of mutation
 - Mutation a sudden change in hereditary material
- De Vries added this idea to Darwin's theory of evolution
 - It explained how new traits arose

Mutation

- Is any change in a sequence of DNA
 - Occur because of mistakes in the replication of DNA or as a result of radiation, or chemicals in the environment
- Mutations can be good and bad
- http://www.pbs.org/wgbh/evolution/educators/course/session4/explore_c.html

Genetic Recombination

- Genetic Recombination is the formation of new combinations of alleles during sexual reproduction
 - Traits from your mother and your father
 - Also called gene shuffling

Genetic Drift

- Genetic drift is a change in the gene pool that is brought about by chance
- There may be certain alleles that only a few individuals have

Migration

- Movement into or out of a population; changes the gene pool
- http://www.pbs.org/wgbh/evolution/educators/course/session4/explore_d.html

Hardy-Weinberg Law - 1908

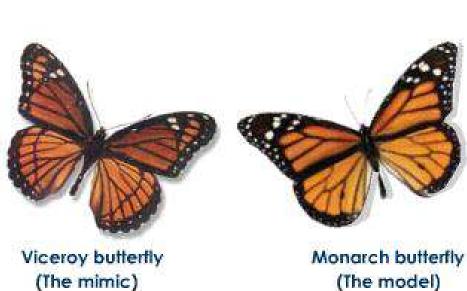
- States that if a population were to not evolve (exhibit an equilibrium of allele frequencies) then the following must be met:
 - 1) No Mutations avoids any new alleles
 - 2) No gene flow can occur (no migration)
 - 3) Random mating must occur
 - 4) The population must be larger so that no genetic drift can cause the allele frequencies to change
 - 5) No selection can occur so that certain alleles are not selected for, or against.

Adaptations and Natural Selection

- Adaptations give some advantage to an organism
- They may be structural or physiological
- http://www.pbs.org/wgbh/evolution/library/01/2/l_012_02.h
 tml

Camouflage

- Camouflage is an adaptation in which the organism has evolved to resemble the environment in which it is found
- These organisms blend in with the background

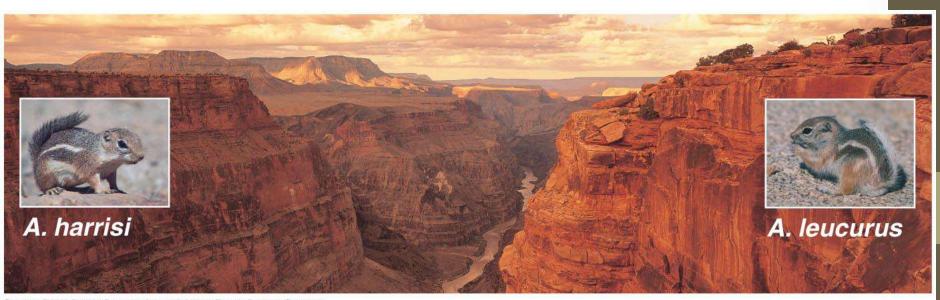

Warning Coloration

- Some organisms have evolved bright vibrant colors which signal to predators
- These organisms are usually poisonous, or taste bad to predators

Mimicry

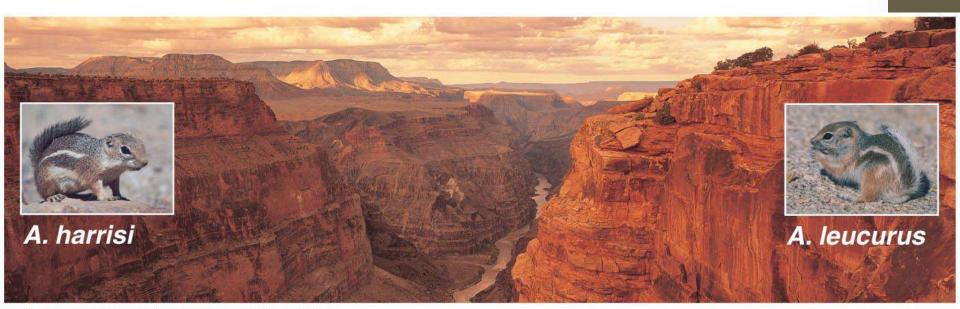
- Some harmless organisms have evolved to look like dangerous organisms
 - This is called mimicry
- Ex: Monarch butterflies are inedible. Viceroy butterflies are edible, but they look like the monarch

Do Now


Complete the quiz

Speciation

- Recall that speciation is the formation of a new species
- Each species is found in a range, or a particular region in the earth


Isolation

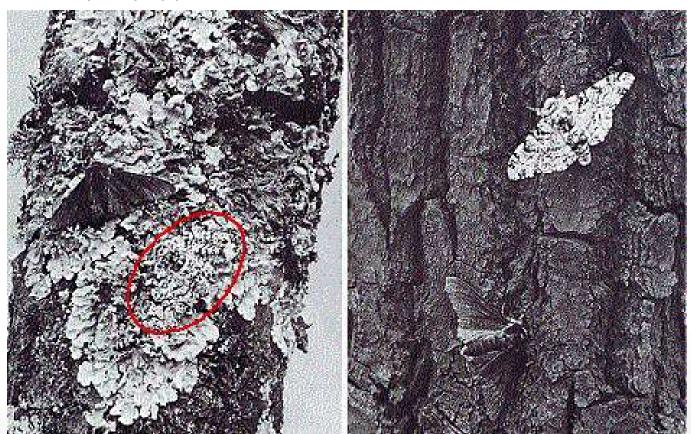
- Isolation is when members of the same species are prevented from interbreeding
- Geographic isolation occurs when a population is divided by a natural barrier, such as a river or mountain

Cont.

- As time progresses, each group will adapt to its environment and a new gene pool will arise
- Ultimately, the two groups will diverge into 2 distinct species, and they will no longer be able to interbreed
- This is referred to as reproductive isolation

Kaibab Squirrel and Abert Squirrel

- A specific example of speciation by geographic and reproductive isolation
- The Grand Canyon acts as a natural barrier
- The 2 squirrels are similar in appearance, but are different species because they cannot interbreed


Kaibab Squirrel (North Rim) Scrurus kaibabensis

Abert Squirtel (South Rim) Scients aberei

Observed Natural Selection

- Scientists have had the opportunity to study evolution in action
 - Example: peppered moth, bacteria, and insects

Industrial Melanism

- Development of dark colored moths in a population exposed to pollution
- In England, before the industrial revolution the light moths were dominant
- During the industrial revolution, pollution caused the bark of trees to become dark, allowing the dark moths to survive

Bacterial Resistance to Antibiotics

- Antibiotics usually kill bacteria
- Once the use of antibiotics became common, there were some strains of bacteria that were resistant

Bacteria Resistance to Antibiotics

- How did this resistance develop?
 - Bacteria developed resistance to it
 - In the large population of bacteria, few individuals had a mutation that made them resistant
 - By natural selection, the resistant strain survived by natural selection and was able to reproduce

Insects Resistance to DDT

- When DDT was first introduced, it was effective in killing insects that attacked crops
- However, a small portion of insects survived

Continued

- These surviving insects, possessed a natural resistance to DDT
- By natural selection, the DDT-resistant insects survived and produced offspring that were resistant

Quiz

- Lamarck
- Darwin
- Natural Selection
- Punctuated Equilibrium
- Gradualism
- Allele Frequencies

http://www.talkorigins.org/faqs/faq-intro-to-biology.html

- A gene is a hereditary unit that can be passed on unaltered for many generations. The gene pool is the set of all genes in a species or population.
- The moths' color was primarily determined by a single gene. [gene: a hereditary unit] So, the change in frequency of dark colored moths represented a change in the gene pool. [gene pool: the set all of genes in a population] This change was, by definition, evolution.
- The increase in relative abundance of the dark type was due to natural selection
- Genes mutate. [gene: a hereditary unit] Individuals are selected. Populations evolve.
- Evolution is not progress. Populations simply adapt to their current surroundings. They do not necessarily become better in any absolute sense over time. A trait or strategy that is