

Calculating Heats of Reaction >

How much heat is released when 100.0 g of Calcium Oxide reacts with excess water? (CaO = -65.2kJ/mol)

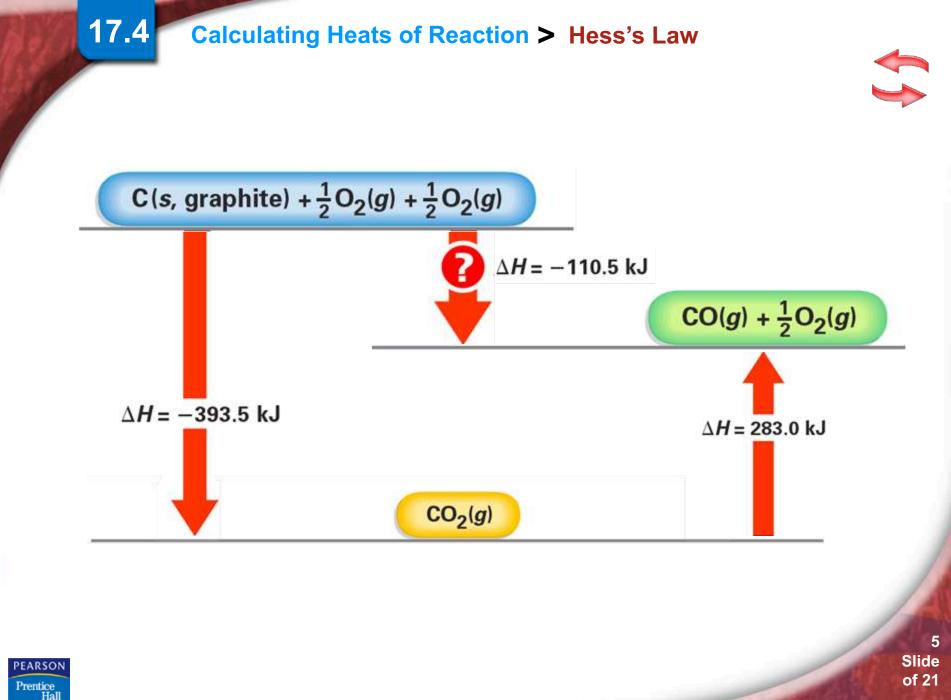
© Copyright Pearson Prentice Hall

Calculating Heats of Reaction > Hess's Law

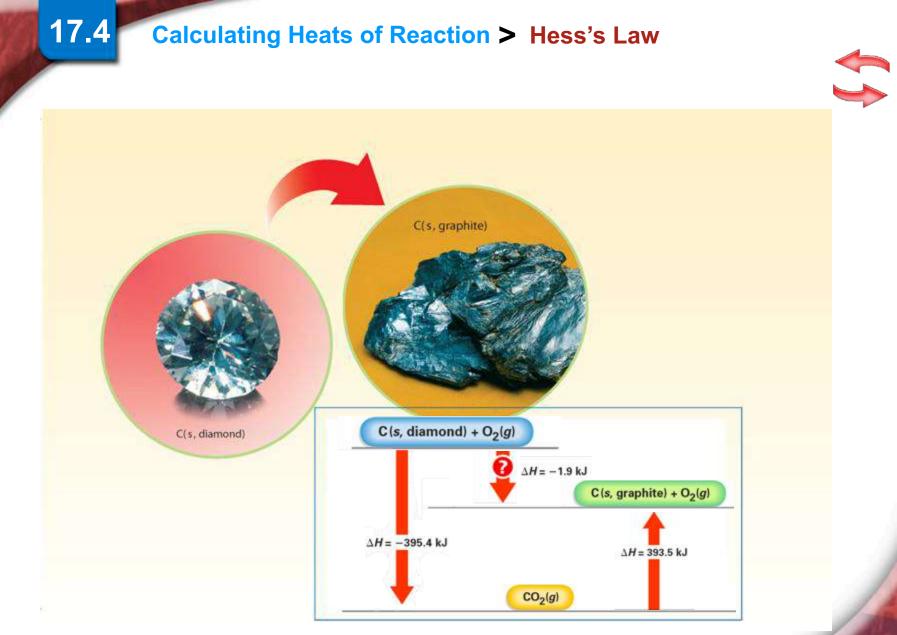
Hess's Law

17.4

–What are two ways that you can determine the heat of reaction when it cannot be directly measured?


© Copyright Pearson Prentice Hall

Calculating Heats of Reaction > Hess's Law


Hess's law allows you to determine the heat of reaction indirectly. Hess's law of heat summation states that if you add two or more thermochemical equations to give a final equation, then you can also add the heats of reaction to give the final heat of reaction.

17.4

© Copyright Pearson Prentice Hall

Standard Heats of Formation

-For a reaction that occurs at standard conditions, you can calculate the heat of reaction by using standard heats of formation.

17.4

© Copyright Pearson Prentice Hall

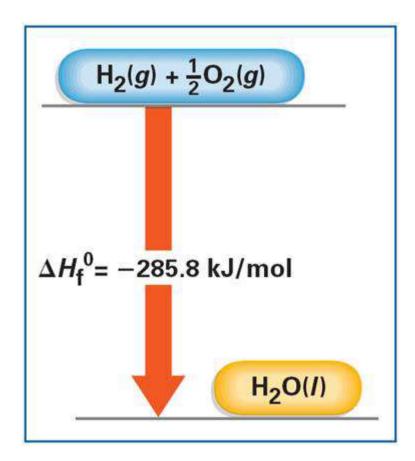
The standard heat of formation ($\Delta H_{\rm f}^0$) of a compound is the change in enthalpy that accompanies the formation of one mole of a compound from its elements with all substances in their standard states at 25°C.

 $\Delta H^0 = \Delta H_f^0$ (products) $-\Delta H_f^0$ (reactants)

17.4

Table 17.4

17.4


Standard Heats of Formation (ΔH_{f}^{0}) at 25°C and 101.3 kPa

Substance	Δ <i>H</i> f ⁰ (kJ/mol)	Substance	Δ <i>H</i> f ⁰ (kJ/mol)
Al ₂ O ₃ (s)	- 1676.0	H ₂ O ₂ (<i>I</i>)	- 187.8
Br ₂ (g)	30.91	1 ₂ (g)	62.4
Br ₂ (/)	0.0	l ₂ (s)	0.0
C(<i>s,</i> diamond)	1.9	N ₂ (g)	0.0
C(<i>s,</i> graphite)	0.0	NH ₃ (g)	-46.19
CH ₄ (g)	-74.86	NO(g)	90.37
CO(g)	-110.5	NO ₂ (g)	33.85
CO ₂ (g)	-393.5	NaCI(s)	-411.2
CaCO ₃ (s)	-1207.0	O ₂ (g)	0.0
CaO(s)	-635.1	O ₃ (g)	142.0
Cl ₂ (g)	0.0	P(s, white)	0.0
Fe(<i>s</i>)	0.0	P(<i>s,</i> red)	-18.4
Fe ₂ O ₃ (<i>s</i>)	-822.1	S(s, rhombic)	0.0
$H_2(g)$	0.0	S(s, monoclinic)	0.30
$H_2O(g)$	-241.8	SO ₂ (g)	-296.8
H ₂ O(<i>I</i>)	-285.8	SO ₃ (g)	-395.7

© Copyright Pearson Prentice Hall

The Standard Heat of Formation of Water

© Copyright Pearson Prentice Hall

Calculating the Standard Heat of Reaction

What is the standard heat of reaction (ΔH^0) for the reaction of CO(g) with O₂(g) to form CO₂(g)?

Carbon Monoxide Detector

© Copyright Pearson Prentice Hall

Analyze List the knowns and the unknown.

Knowns

(from Table 17.4)

- $\Delta H_{\rm f}^0 O_2(g) = 0$ kJ/mol (free element)
- $\Delta H_{\rm f}^0$ CO(g) = -110.5 kJ/mol
- $\Delta H_{\rm f}^0 {\rm CO}_2(g) = -393.5 \, {\rm kJ/mol}$

• $\Delta H^0 = ? \text{ kJ}$

Balance the equation of the reaction of CO(g) with $O_2(g)$ to form $CO_2(g)$. Then determine ΔH^0 using the standard heats of formation of the reactants and products.

SAMPLE PROBLEM 17.7

Calculate Solve for the unknown.

First, write the balanced equation.

 $2CO(g) + O_2(g) \longrightarrow 2CO_2(g)$

Next, find and add the $\Delta H_{\rm f}^0$ of all of the reactants, taking into account the number of moles of each.

$$\Delta H_{\rm f}^0(\text{reactants}) = 2 \operatorname{mol-CO}(g) = \frac{-110.5 \text{ kJ}}{1 \operatorname{mol-CO}(g)} + 0 \text{ kJ}$$
$$= -221.0 \text{ kJ}$$

Then, find the $\Delta H_{\rm f}^0$ of the product in a similar way.

$$\Delta H_{\rm f}^{0}(\text{product}) = 2 \operatorname{mol} \operatorname{CO}_{2}(g) \times \frac{-393.5 \,\text{kJ}}{1 \operatorname{mol} \operatorname{CO}_{2}(g)}$$
$$= -787.0 \,\text{kJ}$$

Finally, solve for the unknown

$$\Delta H^0 = \Delta H_f^0 (\text{products}) - \Delta H_f^0 (\text{reactants})$$

$$\Delta H^0 = (-787.0 \text{ kJ}) - (-221.0 \text{ kJ})$$

$$\Delta H^0 = -566.0 \text{ kJ}$$

Evaluate Does the result make sense?

The ΔH^0 is negative. Therefore, the reaction is exothermic. This makes sense because combustion reactions always release heat.

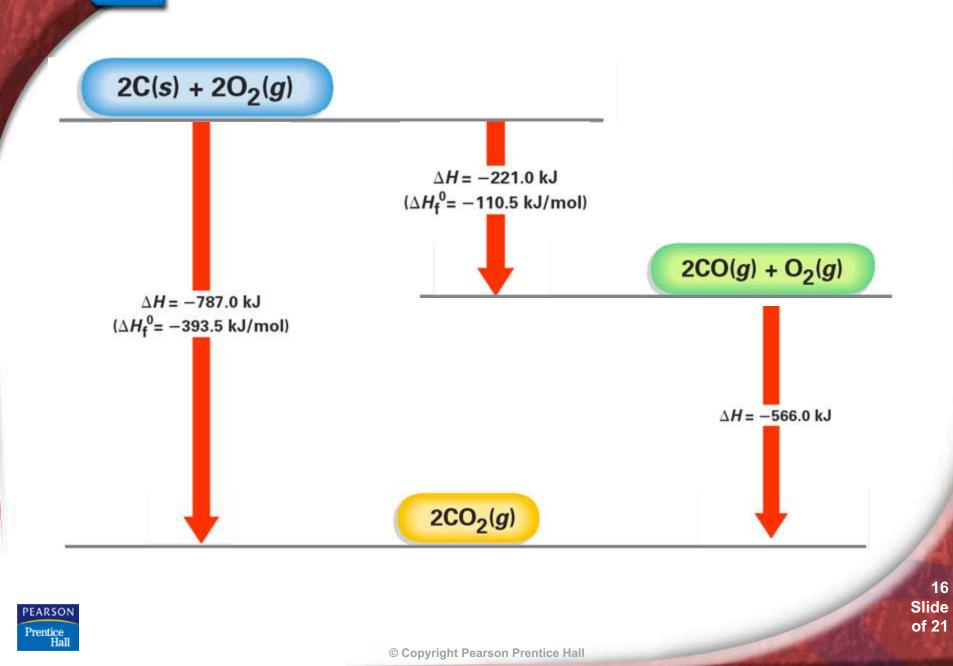
Practice Problems for Sample Problem 17.7

32. Calculate ΔH^0 for the follow-ing reactions.

a.
$$\operatorname{Br}_2(g) \longrightarrow \operatorname{Br}_2(l)$$

b.
$$CaCO_3(s) \longrightarrow$$

$$CaO(s) + CO_2(g)$$


c.
$$2NO(g) + O_2(g) \longrightarrow 2NO_2(g)$$

Problem Solving 17.32 Solve Problem 32 with the help of an interactive guided tutorial.

Calculating Heats of Reaction > Standard Heats of Formation

17.4

Assess students' understanding of 17.4.

Continue to:

-or-

© Copyright Pearson Prentice Hall

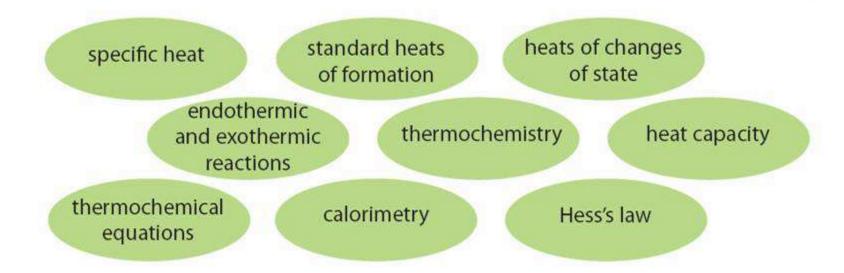
17.4 Section Quiz.

- According to Hess's law, it is possible to calculate an unknown heat of reaction by using
 - heats of fusion for each of the compounds in the reaction.
 - two other reactions with known heats of reaction.
 - specific heat capacities for each compound in the reaction.
 - density for each compound in the reaction.

17.4 Section Quiz.

- 2. The heat of formation of $CI_2(g)$ at 25°C is

- the same as that of H₂O at 25°C.
- larger than that of Fe(s) at 25°C.
- undefined.
- zero.


17.4 Section Quiz.

- 3.Calculate ∆ H⁰ for NH₃(g) + HCl(g) → NH₄Cl(s). Standard heats of formation: NH₃(g) = -45.9 kJ/mol, HCl(g) = -92.3 kJ/mol, NH₄Cl(s) = -314.4 kJ/mol
 176.2 kJ
 - -360.8 kJ
 - _176.2 kJ

ChemASAP click to start Calculating Heats of Reaction > Concept Map 17

-Solve the Concept Map with the help of an interactive guided tutorial.

© Copyright Pearson Prentice Hall

END OF SHOW