
Honors Computer

Programming 1-2

Introduction To Chapter 3

Fundamental Data Types

Chapter Goals

• To understand ________________________________ integer and floating-point numbers

• To recognize the ___

limitations of the int and double types and the

overflow and round off errors that can result

• To write ____________________________ arithmetic expressions in Java

• To use ___ the String type to define and manipulate character strings

• To learn about ___________________ the char data type

• To learn _________________________ how to read program input

• To understand ___ the copy behavior of primitive types and object references

In this chapter we will use a Purse

class to demonstrate several

important concepts.

Number Types
public class Purse

{

 public Purse()

 {

 // implementation

 }

 public void addNickels(int count)

 {

 // implementation

 }

 public void addDimes(int count)

 {

 // implementation

 }

 public void addQuarters(int count)

 {

 // implementation

 }

 public double getTotal()

 {

 // implementation

 }

 // private instance variables

}

 The general

outline for the Purse class is shown

at the right.

If you look closely at the methods, you will see a variable count of type

____ . This int denotes an ________ type . An integer is a number

without a __________ part . For example, ___ is an integer but _____

is not . The number ______ and _________ numbers are integers.

Thus, the ____ type is more restrictive than the type ________ we looked

at in chapter 2.

There is a constructor to make a new purse:

 You can add nickels, dimes, and

quarters with statements such as

Number Types

Purse myPurse = new Purse();

myPurse.addNickels(3);

myPurse.addDimes(1); myPurse.addQuarters(2);

You can ask the Purse object about the total value of the coins in the

purse: double totalValue = myPurse.getTotal(); // returns 0.75

int integer

fractional 3 0.05

zero negative

int double

,

, and .

.

Why do we need both an int type and a double type? The first reason

is one of ___________ in which case we can't have anything other than a

_______ number of nickels. The second reason is that integers are more

__________ than floating-point numbers since they take less ________

space, are processed ______ , and don't cause __________ errors.

Number Types

philosophy

whole

pragmatic storage

faster rounding

Now lets start implementing the Purse class. Any _______ object can

be described in terms of the number of _______ , ______ , and _______ .

Thus we use three ______________ to represent the state of a Purse

object.

Number Types

Purse

nickels dimes quarters

instance fields

public class Purse
{
 ...

 private int nickels;

 private int dimes;

 private int quarters;

}

instance fields

We can also implement the getTotal method:

Number Types

public double getTotal()

{

}

return a floating-point number

return nickels  0.05 + dimes  0.1 + quarters  0.25;

 To write numbers in exponential notation in Java,

use E .

 and returns a

_____________ number of type ________ . The _________ statement

returns the __________ value as the method result and the method _____ .

For example, to enter the number you write

In Java, multiplication is denoted as an ___________ . Do not write

________ or _______ in numbers. For example, 10,150.75 must be

entered as

Number Types

asterisk 

commas spaces

10150.75

5.0  10

5.0E-3
-3

The getTotal method computes the value of

nickels  0.05 + dimes  0.1 + quarters  0.25

floating-point double return

computed exits

.

You may be tempted to use _______ for one of the instance fields instead of

_____________ . Don't do it. Descriptive variable names are a better

choice because they make your code ____________ without requiring

__________ .

Number Types

int n

int nickels

easy to read

comments

 However, _________

suffer from a lack of __________ . They only store about ____ significant

digits.

Unfortunately, ____ and ________ values do suffer one problem: they

cannot represent arbitrarily ______ numbers. Integers have a range of

 -2,147,483,648 to 2,147,483,647 (about _________ to ________).

If you want to represent the world population, you can't use _____ .

Double numbers can go up to more than ______ .

Number Types

int double

large

- 2 billion 2 billion

ints

10
300

doubles

precision 15

Suppose your customers might find the price of ___________ dollars for

your product a little excessive, so you want to reduce it by ________ .

Consider the program:

Number Types
300 trillion

5 cents

public double AdvancedTopic

{

 public static void main(String[] args)

 {

 double origPrice = 3E14;

 double discountedPrice = origPrice - 0.05;

 double discount = origPrice - discountedPrice; // should be 0.05

 System.out.println(discount); // prints 0.0625

 }

}

The program prints ________ instead of ______ . It is off by more than a

penny. Most of the time using ____ and ________ are acceptable. Keep

in mind that __________ and loss of __________ can occur.

0.0625 0.05

int double

overflows precision

The __ operator is called the ____________ operator. On the left, you

need a _________ name. The right-hand side can be a single _______

or an ___________ . The assignment operator sets the ________ to the

given value.

The default _____________ for the Purse class is shown below.

Assignment

constructor

public Purse()

{

 nickels = 0;

 dimes = 0;

 quarters = 0;

}

= assignment

variable value

expression variable

left-hand side is

a variable

right-hand side is

a value or expression

It means: compute the value of

the expression __________________

and places the result into the variable

_________ .

So the + + is called the __________ operator. There is also a

___________ operator. The statement

then nickels is ___ after the statement. This operation is so common that

there is a special shorthand for it:

The statement has the effect of

_____________________ . So if nickels was 3 before the statement ,

but that the right side is ___________ the left-hand side variable.

Now look at the code:

Assignment

nickels + count

public void addNickels(int count)

{

 nickels = nickels + count;

}

nickels

The = sign doesn't mean that the right side is equal to the left side

copied into

nickels = nickels + 1

incrementing nickels

4

nickels + +;

increment

decrement nickels - -; 1 subtracts ____

from nickels .

 is a shortcut for

For example, the statement is a shortcut for

 Similarly, the statement

In Java, you can combine __________ and ___________ .

Assignment

arithmetic assignment

nickels + = count

nickels = nickels + count

nickels + = 2 nickels = nickels + 2

.

.

 In Java, constants are declared with the

keyword ______ .

 The code

would be easier to understand if it were written as:

 That is,

nickelValue is _________ .

There is a difference between the _________ and the _____________

variables. The variable nickels will _____ in value during the lifetime of

the program. But nickelValue is _______ 0.05 .

 As a matter of style, we will use all ___________ letters

to identify constants. So the above statement might appear:

depends on the ________ quantities 0.05 , 0.1 , and 0.25 .

The statement

Constants

nickels  0.05 + dimes  0.1 + quarters  0.25

numeric

nickels  nickelValue + dimes  dimeValue

 + quarters  quarterValue

nickels nickelValue

vary

always

constant

final uppercase

nickels  NICKEL_VALUE + dimes  DIME_VALUE

 + quarters  QUARTER_VALUE

The keyword static will be discussed in chapter 6.

The general setup is

shown at the right.

Then you need to declare them together with _________________ of the

class and tag them as ______________ .

Frequently constants are needed in several _________ of the class.

Constants

methods

instance variables

static final

public class Purse()

{

 // methods

 ...

 // constants

 private static final double NICKEL_VALUE = 0.05;

 private static final double DIME_VALUE = 0.1;

 private static final double QUARTER_VALUE = 0.25;

 // instance variables

 private int nickels;

 private int dimes;

 private int quarters;

}

constants are declared as

static final

 You can refer to the ________ constants shown as

_________ and _________ . For example,

It is possible to declare constants as _________ :

An example of this comes from the ______ class which is part of the

standard library.

Constants

public

Math

public class Math()

{

 ...

 public static final double E = 2.7182818284590452354;

 public static final double PI = 3.14159265358979323846;

}

public

Math.E Math.PI

double circumference = Math.PI  diameter;

 only ___ is divided by 2 and then sum of

__ and

 is computed first and

then the ______ is divided by 2 .

in the expression

is formed.

in the expression the sum

Division is indicated with a ________ not a fraction bar. For example,

becomes Parenthesis are used to indicate the

_______ in which subexpressions are computed .

slash /

a + b

2
(a + b) / 2

order

a + b

result

b

a b / 2

.

(a + b) / 2

a + b / 2

Arithmetic and Mathematical Functions

For example,

In contrast,

Division works as you would expect as long as one of the arguments is a

______________ number. That is, __________ and ___________ and

____________ all yield ____ . However, if ____ arguments are integers

floating-point

Arithmetic and Mathematical Functions

12.0 / 8 12 / 8.0

12.0 / 8.0 1.5 all

That is, ______ evaluates to ____ because 7 divided by 4 is 1 with a

remainder of 3 (which is ___________).

7 / 4 1

discarded

then the result is an ________ with the ___________ discarded. integer remainder

Here is a typical use of the / and % operators: convert a number of cents

into number of dollars and resulting change.

If you are interested only in the remainder use the ___ operator.

So 7 % 4 is equal to ___ . The % operator is referred to as the _________

operator.

Arithmetic and Mathematical Functions

%

3 modulus

final int PENNIES_PER_NICKEL = 5;

final int PENNIES_PER_DIME = 10;

final int PENNIES_PER_QUARTER = 25;

final int PENNIES_PER_DOLLAR = 100;

// compute total value in pennies

int total = nickels  PENNIES_PER_NICKEL

 + dimes  PENNIES_PER_DIME

 + quarters  PENNIES_PER_QUARTER;

// use integer division to convert to dollars & cents

int dollars = total / PENNIES_PER_DOLLAR;

int cents = total % PENNIES_PER_DOLLAR;

For example, if

total is 243 ,

then dollars is

set to ___ and

cents is set to

____ .

2

243 100

2

200

43

Here is a typical use of the / and % operators: convert a number of cents

into number of dollars and resulting change.

If you are interested only in the remainder use the ___ operator.

So 7 % 4 is equal to ___ . The % operator is referred to as the _________

operator.

Arithmetic and Mathematical Functions

%

3 modulus

final int PENNIES_PER_NICKEL = 5;

final int PENNIES_PER_DIME = 10;

final int PENNIES_PER_QUARTER = 25;

final int PENNIES_PER_DOLLAR = 100;

// compute total value in pennies

int total = nickels  PENNIES_PER_NICKEL

 + dimes  PENNIES_PER_DIME

 + quarters  PENNIES_PER_QUARTER;

// use integer division to convert to dollars & cents

int dollars = total / PENNIES_PER_DOLLAR;

int cents = total % PENNIES_PER_DOLLAR;

For example, if

total is 243 ,

then dollars is

set to ___ and

cents is set to

____ .

2

243 100

2

200

43

43

 It is a common error to use _______ division

by accident. Consider the program:

Because s1 , s2 , and s3 are all _________ the scores add up to the

integer ____ which when divided by 3 will produce a quotient of ___

with the remainder ___ being discarded.

It is unfortunate that Java uses the same / symbol for both _______ and

_____________ divisions.

integer

floating-point integer

int s1 = 5; // score of test 1

int s2 = 6; // score of test 2

int s3 = 3; // score of test 3

double ave = (s1 + s2 + s3) / 3; // computation error

// output average test score

System.out.println("Your average is " + ave);

14 4

2

Arithmetic and Mathematical Functions

integers

The remedy is to make either the numerator or the denominator into a

_____________ number. One solution is to declare floating-point

and then divide total by 3 double total = s1 + s2 + s3;

double ave = (s1 + s2 + s3) / 3.0;

 while a

second solution is to change the average calculation so that you divide by a

floating-point number:

 shows some (but not all) of the methods in

the ______ class:

The table below (see page 95)

Math

Function Returns

Math.sqrt(x) square root of x

Math.pow(x, y) x raised to the y power

Math.sin(x) sine of x (x in radians)

Math.exp(x) e raised to the x power

Math.round(x) closest long integer to x

Math.abs(x) absolute value of x

Math.min(x, y) minimum of x and y

Math.max(x, y) maximum of x and y

So the subexpression of the quadratic formula

 becomes: (- b + Math.sqrt(b  b - 4  a  c)) / (2  a)

Arithmetic and Mathematical Functions

What's wrong with it? Count the ____________ . The parenthesis are

___________ since there are 5 opening parenthesis but only 4 closing

parenthesis.

Consider the expression:

parenthesis

(1.5  ((- b - Math.sqrt(b  b - 4  a  c)) / (2  a))

unbalanced

Arithmetic and Mathematical Functions

But something is wrong. Here is a trick that finds the error: start counting

1 at the first opening parenthesis, add 1 whenever you see another opening

parenthesis, but subtract 1 when you see a ________ parenthesis.

If you count you will find ___ opening and ___ closing parenthesis.

If the count ever drops below ___ or if the count isn't ___ at the end, the

parenthesis are unbalanced. In this case:

Now consider the following:

1.5  (Math.sqrt(b  b - 4  a  c))) - ((b / (2  a))

5 5

closing

0 0

1.5  (Math.sqrt(b  b - 4  a  c))) - ((b / (2  a))

 1 2 1 0 -1

error here!!

Arithmetic and Mathematical Functions

The methods of the ______ class, such as the ______ method, are different

than those of some other methods. The ___________ method of the

Purse class operates on a ________ object.

Calling Static Methods

Math sqrt

getTotal

Purse The _________ method

operates on a _____________ object.

println

System.out

or

A method such as _____________ that does not operate on an object is

called a ________ method. To call a static method, you must specify

the name of the ______ hence the call

This call makes it appear as if ______ is an object since it looks like the call

 in which case the getTotal method is applied to

the object _________ .

 That is, you But the sqrt method does not operate on any ________ .

The reason is that in Java, __________ are not objects. Actually, the

number is a ___________ in a method call such as

 However, Math is a ______ not an object.

Calling Static Methods

object

double x = 4;

double root = x.sqrt(); // error

numbers

parameter Math.sqrt(x)

Math

myPurse.getTotal()

myPurse class

Math.round

static

class Math.sqrt Math.round

.

.

do not call

On the other hand, denotes a call to the ______ method

inside the ______ class.

How can you tell if Math is a _______ or an _______ ? All classes in the

Java library start with an uppercase letter (such as ________ or ______) .

You can tell objects and methods apart since method calls are followed by a

____________ . Therefore,

Objects and methods start with a lowercase letter (such as ____ or

_________) .

Calling Static Methods

class object

System Math

out

println

parenthesis System.out.println() denotes a call of the

_________ method on the _____ object inside the _________ class. println out System

Math.sqrt(x) sqrt

Math

However, it is legal to store an _____ expression in a _______ variable:

When you make an assignment of an expression into a variable, the _____

of the variable and the expression must be ___________ .

Type Conversion

type

compatible

For example, it is an error to assign: double total = "a lot"; // error

because total is a _____________ variable and "a lot" is a ________ . floating-point String

int dollars = 2;

double total = dollars; // ok

int double

makes total equal to 2.0

In Java, you cannot assign a _____________ expression to an _____

variable:

You must convert the floating-point value with a _____ :

Type Conversion

floating-point int

double total = 2.54;

int dollars = total; // error

cast

int dollars = (int)total ;

converts the floating-point value _______ to an int . The cast

The effect of the cast is to ________ the fractional part.

(int) total

discard For example, if

total is 13.75 then dollars is set to ____ . 13

 and then multiply by

100 to ______ .

 to an int ____

 and then the

cast

will first evaluate the expression to ________

 will convert the expression to _______ .

Type Conversion

If total is 13.75 then the cast int pennies = (int)(total  100);

total  100 1375.0

(int) 1375

If total is 13.75 then the cast int pennies = (int)total  100;

will first convert total ______ 13.75 13

1300

Actually, there is a better way. Use the _____________ method in the

standard Java library. However, it returns a _______________ .

A common task: round to the nearest ____ . One way is to add _____

and then _____ as an int . This is illustrated in the code:

Type Conversion

int 0.5

cast

double price = 44.95;

int dollars = (int)(price + 0.5); // ok for positive values

System.out.print("The price is approximately $");

System.out.println(dollars); // prints 45

Math.round

long integer

You need to _____ it as an ____ :

int dollars = (int)Math.round(price);

cast int

The example should print _____ instead of 434 . The reason for this

error is that there is no exact _______ representation for 4.35 just as

there is no exact ________ representation for 1/3 . The remedy is to use

_____________ :

Sometimes _________ errors occur due to the fact that numbers are stored

in the CPU as _______ numbers. Here is an example:

Type Conversion

rounding

binary

double f = 4.35;

int n = (int)(100  f);

System.out.println(n); // prints 434

435

binary

decimal

Math.round

int n = (int)Math.round(100  f);

 You

can compute the length of a string with the ___________ method:

A string is a sequence of characters such as "Hello, World!" enclosed

in _________ which are not themselves part of the _______ . In Java,

unlike numbers, strings are ________ . You can tell that String is a

class name since it begins with an ___________ letter whereas the basic

types int and double begin with a ___________ letter.

Strings

quotes " String

objects

uppercase

lowercase

The number of characters in the string is called the _______ of the string. length

For example, the length of the string "Hello, World!" is ____ .

length()

int n = message.length();

13

makes bond equal to _____________ .

The ___ operator concatenates two strings. If one of the expressions

either to the _____ or to the ______ of the ___ is a string then the other is

automatically forced to be a string as well.

A string of length zero, containing ____ characters, is called the _______

string and is written as ___ . You are reminded that you can use

______________ to put two or more strings together to form a longer string:

Strings

no empty

""

concatenation

String name = "Dave";

String message = "Hello, " + name;

+

left right +

For example,

"Agent 007"

String a = "Agent 00";

int n = 7;

String bond = a + 7;

a String not a String will be a String

Sometimes you have a string that contains a number, usually from user

______ . For example, suppose the string variable _______ has the value

_____ . To get the value 19 , you use the static __________ method

of the _________ class:

This concatenation is very powerful and can be used to make statements

such as:

Strings

input

System.out.println("The total is " + total);

input

"19" parseInt

Integer

int count = Integer.parseInt(input); // count is the integer 19

 They return new _______ that contain either

the uppercase or lowercase versions of the original string. In fact, no

string methods modify the _______________ on which they operate.

For that reason, strings are called __________ objects.

prints _______ and ______ .

Note that the toUpperCase and toLowerCase methods don't change the

original string __________ .

The _____________ and _____________ methods make strings with only

upper- or lower- case letters. For example, the code:

Strings

toUpperCase toLowerCase

String greeting = "Hello";

System.out.println(greeting.toUpperCase());

System.out.println(greeting.toLowerCase());

HELLO hello

greeting objects

String object

immutable

String greeting = "Hello";

System.out.println(greeting.toUpperCase());

System.out.println(greeting.toLowerCase());

String greeting = "Hello";

System.out.println(greeting.toUpperCase());

System.out.println(greeting.toLowerCase());

String greeting = "Hello";

System.out.println(greeting.toUpperCase());

System.out.println(greeting.toLowerCase());

The call returns a string that is made up

from the characters in the string ____ starting at character ______

and containing all characters up to, but ____________ , the character

_________ . Here is an example:

The ___________ method computes substrings of a string.

Strings

substring

str.substring(start, pastEnd)

str start

not including

pastEnd

String greeting = "Hello, World!";

String sub = greeting.substring(7, 12);

 // sub is "World"

H e l l o , W o r l d !

0 1 2 3 4 5 6 7 8 9 10 11 12

Starting position ___ means start at the beginning of the string.

Strings

0

String greeting = "Hello, World!";

String sub = greeting.substring(7, 12);

 // sub is "World"

The first string position is numbered ____ and is the character ____, the

second one ____ and is the character ___ , and so on.

0 H

1 e

The position of the last character ____ is ____ which is 1 less than the

_______ of the string.

! 12

length

H e l l o , W o r l d !

0 1 2 3 4 5 6 7 8 9 10 11 12

String positions:

Let us figure out how to extract the substring "World" . You find that W

is character number ___ and the first character you don't want is ___ at

____ .

Strings

7

H e l l o , W o r l d !

0 1 2 3 4 5 6 7 8 9 10 11 12

!

12

Therefore, the command is:

String w = greeting.substring(7, 12);

Formatting Numbers

The ________ format for printing numbers is not always what you would

like. For example, consider the following code:

default

double total = 3.50;

final double TAX_RATE = 8.5; // Tax rate in percent

double tax = total * TAX_RATE / 100; // tax is 0.2975

System.out.println("Total: " + total);

System.out.println("Tax: " + tax);

The output is: Total: 3.5

Tax: 0.2975

You may prefer the numbers to be printed with _____ digits after the

decimal point, like this:

two

Total: 3.50

Tax: 0.30

Formatting Numbers

You can achieve this with the ________ method of the PrintStream

class. The first parameter of the printf method is a format _______

that shows how output should be ___________ . The format string

contains:

printf

string

formatted

• characters that are simply ________

• format __________ . • These are codes that start with a ____

character and end with a _____ that indicates the format _____ .

printed

 There are quite a few

formats.

specifiers %

type

 The table

shows the most important

ones.

Format Types

 code type example

 d integer 123

 f floating-point 12.30

 s string Tax:

 n newline character

letter

Formatting Numbers

The remaining parameters of

printf are the _______ to be

formatted.

values

Format Types

 code type example

 d integer 123

 f floating-point 12.30

 s string Tax:

 n newline character For example:

System.out.printf("Total:%5.2f", total);

The above prints the string "Total:" followed by a floating-point number

with _______ of 5 and a _________ of 2. The precision is the number

of ______ after the decimal point. If the value of total is 3.5 and if a

space character is shown by the character x , then the output of the

above statement would be ______________ . Notice that the number is

_____ - justified.

width precision

digits

Total:x3.50

right

Formatting Numbers

If a newline character is desired, then the above example could be modified:

System.out.printf("Total:%5.2f%n", total);

The table below indicates some of the more important format ______ :

Format Flags

 flag meaning example

 - left-justification 123 followed by spaces

 0 show leading zeros 001.23

 +
 show a plus sign for

 positive numbers
 +1.23

 (
 enclose negative numbers

 in parenthesis
 (1.23)

 , show decimal separators 12,300

flags

Formatting Numbers

Format Flags

 flag meaning example

 - left-justification 123 followed by spaces

 0 show leading zeros 001.23

 +
 show a plus sign for

 positive numbers
 +1.23

 (
 enclose negative numbers

 in parenthesis
 (1.23)

 , show decimal separators 12,300

The following shows a more complicated example:

System.out.printf("%-6s%5.2f%n", "Tax:", tax);

This example shows ___ format specifiers. The first one is ______ .

The s indicates a _______ . The hyphen is a _____ , which has the effect

of _____ - justifying the string. So %-6s indicates a left-aligned string

of width 6.

3 %-6s

string flag

left

The second format specifier is _______ which will cause the value of tax to

be rounded to 2 decimal places with a field-width of 5.

%5.2f The third format specifier is ____ which represents a ________ character. %n newline

So if the variable tax has a value of 0.2975 and if the character x is used

to represent a space, then the above line has output of ______________ . Tax:xxx0.30

Formatting Numbers

The _________ method of the String class is similar to the _________

method. However, it returns a string instead of producing _______ .

format printf

output

For example, the call

String message = String.format("Total:%5.2f", total);

sets the message variable to the string ________________ . "Total: 3.50"

 The

______________ class has a static method ___________________ that

displays an input dialog:

The user can type any ________ into the input field and click the _____

button. Then the __________________ method returns the String that

the user entered.

You should capture this input with a _______ variable:

In this section, we will learn about reading user ______ .

Reading Input using a Dialog Box

JOptionPane showInputDialog

String OK

showInputDialog

String

String input =

 JOptionPane.showInputDialog("How many nickels do you have?");

input

If the user doesn't enter a number, then the ___________ method

___________________ . An exception is a way for a method to indicate an

______ condition. This will terminate the program with an

______________ .

Often you want the input as a ________ , not a _________ .

Reading Input using a Dialog Box

number String Use the

____________________ and _______________________ methods to

convert the string to a number:

Integer.parseInt Double.parseDouble

int count = Integer.parseInt(input);

parseInt

throws an exception

error

error message

Finally, when you call _______________________________ in your

programs, you need to add a line:

Otherwise, your program will not _____ automatically.

Reading Input using a Dialog Box

JOptionPane.showInputDialog

System.exit(0);

An example of a test class that takes user input is shown on your paper.

 The number ___

is the error code.

exit 0

 A code of ___ indicates ___________ completion of

the program.

0 successful

 Nonzero codes indicate an ______ condition. error

Reading Console Input

Finally, in Java 5.0, you can read keyboard input in a convenient manner

using the __________ class. To construct a Scanner object so that

you can read from _________ input , pass the ____________ object to

the Scanner constructor:

Scanner

keyboard System.in

Scanner console = new Scanner(System.in);

Once you have a scanner, you use the __________ or ____________

methods to read the next integer or floating-point number.

nextInt nextDouble

System.out.print("Enter quantity: ");

int quantity = console.nextInt();

System.out.print("Enter price: ");

double price = console.nextDouble();

Notice that each method call is preceded by a ________ . prompt

Reading Console Input

The __________ method returns the next line of input while the ______

method returns the next _____ .

nextLine next

word

System.out.print("Enter city: ");

String city = console.nextLine();

System.out.print("Enter state code: ");

String state = console.next();

Here we use the nextLine method to read a city name that may consist of

________ words, such as San Francisco . We use the next method to

read the state code (such as CA) which consists of a _______ word.

multiple

single

Character constants look like string constants except that character

constants are delimited by _______________ . For example, _____ is a

string containing a single character. But ____ is a character constant.

You can use ________ sequences inside character constants. For

example, ______ is the newline character and ___________ is the

character é.

Strings are composed of ___________ . Characters are values of the

_______ type. A variable of type char can hold a _______ character.

Characters

characters

char single

single quotes ' "H"

'H'

escape

'\n' '\u00E9'

The ________ method of the String class returns a character from a

string. As with the ____________ method, the positions in the string are

counted starting at ___ .

Characters have __________ values. These values are shown in

appendix A5. For example, the character 'H' is encoded as ____ .

Characters

numerical

72

charAt

substring

0

For example, the statement String greeting = "Hello";

char ch = greeting.charAt(0);

sets ch to the character ____ . 'H'

There is an important difference between primitive types and objects in

Java.

In Java, every value is either a _____________ or an _______________ .

Primitive types are numbers (such as _____ , ________ , ______ , and the

_________ type you will encounter in chapter 5).

 Primitive types hold _______ but object variables don't hold

objects -- they hold ____________________ .

When you copy a primitive type value, the original and the copy are

_____________ values. But when you copy an object reference, both the

original and the copy are references to the ____________ .

Comparing Primitive Types and Objects

primitive type object reference

int double char

boolean

values

references to objects

same object

 The table shown on the

handout summarizes the primitive types available for use in Java.

independent

Now the variable balance1 contains ______ and balance2 contains

______ .

Consider the following code using primitive type variables:

Comparing Primitive Types and Objects

1000

1500

double balance1 = 1000;

double balance2 = balance1;

balance2 = balance2 + 500;

balance1

1000

double balance1 = 1000;

balance2

1000

double balance2 = balance1;

1500

Comparing Primitive Types and Objects

Now consider similar code for BankAccount objects:

Since both account1 and account2 refer to the same object, when

account2 changed to $1500 account1 also changed to $1500.

account2.deposit(500);

BankAccount account1 = new BankAccount(1000);

BankAccount account2 = account1;

balance = 1000

BankAccount account1 = new BankAccount(1000);

account1

account2

BankAccount account2 = account1;

1500

Comparing Primitive Types and Objects

If you need to make a copy of an object, you will need to construct a new

object:

account2 = new BankAccount(account1.getBalance());

balance = 1000
account1

balance = 1000
account2

