Honors Computer Programming 1-2

Chapter 3 Activities

1A. Correct the errors in the following variable declarations:

1B Complete the following table by renaming the bad variable names and providing descriptions.

Bad Variable Declaration	Improved Declaration	Description
double current profit;	<pre>double currentProfit;</pre>	the current profit
	<pre>int numSold;</pre>	counts products sold this month
double %increase	<pre>double percentIncrease;</pre>	the percent increase
	double dollarsEarned;	dollars earned this month

1C Give definitions for each of the constant descriptions listed below.

Constant Defintion	Description
<pre>final int DAYS_IN_WEEK = 7;</pre>	Number of days in a week
<pre>final int WEEKS_IN_YEAR = 52;</pre>	Number of weeks in a year
<pre>final double WAGE_PER_HOUR = 9.00;</pre>	Minimum wage per hour

2A Fix the right-hand sides of the following assignments so that they are the correct type for the variable on the left side.

<pre>int x = Math.sqrt(4);</pre>	<pre>int x = (int)Math.sqrt(4);</pre>
double y = "3";	<pre>double y = Double.parseDouble("3");</pre>
String $z = 3.14;$	String z = "" + 3.14;

2B What is wrong with each of these assignments?

Statement	Error
a + 2 = 3 ;	left-hand side must be a variable
Math.PI = 3;	a constant cannot be modified
x = x + 1;	The assignment operator is a single =

2C Computations with floating-point numbers have finite precision. What values are assigned in the following assignments?

2C Computations with floating-point numbers have finite precision. What values are assigned in the following assignments?

	Statement	Value
double :	x = Math.pow(10, 20) + 1;	1.0E20
double y	y = x - 1;	1.0E20
• • • •	= x - 1 = $(10^{20} + 1) - 1$ = 10^{20} = $1000000000000000000000000000000000000$	00000

2C Computations with floating-point numbers have finite precision. What values are assigned in the following assignments?

Statement	Value
<pre>double x = Math.pow(10, 20) + 1;</pre>	1.0E20
double $y = x - 1;$	1.0E20
double z = x - y;	0.0
z = x - y	
$= (10^{20} + 1)$ = 1) – 10 ²⁰

Statement	Value	
int x = 6 / 3;	2	
		2
		3) 6

quotient is 2, remainder is discarded

Statement	Value	
int x = 6 / 3;	2	
int $x = 7 / 3;$	2 🔶	2
		3)7
		1

quotient is 2, remainder is discarded

Statement	Value
int x = 6 / 3;	2
int x = 7 / 3;	2
double $x = 7 / 3;$	2.0
int x = 7 % 3;	1 🔶

remainder is 1, quotient is discarded

Statement	Value	Statement	Value
int x = 6 / 3;	2	int x = 6 % 3;	0
int x = 7 / 3;	2		
double $x = 7 / 3;$	2.0		
int x = 7 % 3;	1		
$3) \begin{array}{c} 2\\ 3) \begin{array}{c} 6\\ 6\\ 0 \end{array}$ remainder is 0, quotient is discarded			

Statement	Value	Statement	Value
int $x = 6 / 3;$	2	int x = 6 % 3;	0
int $x = 7 / 3;$	2	int x = 999 / 1000;	0
double $x = 7 / 3;$	2.0		
int x = 7 % 3;	1		
0 1000) 999 <u>0</u> 999			
quotient is 0,			

Statement	Value	Statement	Value
int x = 6 / 3;	2	int x = 6 % 3;	0
int x = 7 / 3;	2	int x = 999 / 1000;	0
double $x = 7 / 3;$	2.0	double x = 999.0 / 1000.0;	. 999
int x = 7 % 3;	1		

ordinary decimal division

Statement	Value	Statement	Value
int x = 6 / 3;	2	int x = 6 % 3;	0
int x = 7 / 3;	2	int x = 999 / 1000;	0
double $x = 7 / 3;$	2.0	double x = 999.0 / 1000.0;	. 999
int x = 7 % 3;	1	<pre>int x = (int)(999 / 1000.0);</pre>	0

convert to an integer: drop the decimal part

ordinary decimal division

3B Translate the following algebraic expressions into Java:

Algebraic Expression	Java Equivalent			
$\mathbf{y} = \mathbf{x} + \frac{1}{2}$	y = x + 1.0 / 2.0;			
$y = x^2 + 2x + 1$	y = Math.pow(x, 2) + 2 * x + 1;			
$\mathbf{y} = \frac{\mathbf{x}}{1 - \mathbf{x}}$	y = x / (1 - x);			
y = x * x + 2 * x + 1;				

4. What will be the resulting substring in the following examples? Assume the declaration: String name = "John Smith"
J o h n S m i t h

Substring Expression	Result
<pre>String firstName = name.substring(0, 4);</pre>	John
<pre>String lastName = name.substring(5, 6);</pre>	S
<pre>String name2 = name.substring(1, 11);</pre>	out-of-bounds error
<pre>String lastName = name.substring(5);</pre>	Smith
<pre>String lname = name.substring(0, 6);</pre>	John S
<pre>String lname = name.substring(9, 10);</pre>	h
<pre>String lname = name.substring(1, name.length());</pre>	ohn Smith

5. Using JOptionPane.showInputDialog, ask the user to supply two integers a and b. Then print out the values a / b and a % b.

```
import javax.swing.JOptionPane; // necessary for input dialog
...
// input the first number
String input = JOptionPane.showInputDialog("Enter an integer:");
int a = Integer.parseInt(input);
// input the second number
input = JOptionPane.showInputDialog("Enter a second integer:");
int b = Integer.parseInt(input);
// output the quotient and remainder
System.out.println("Quotient = " + (a / b));
System.out.println("Remainder = " + (a % b));
// allow the program to exit automatically
System.exit(0);
```

