HENGKS Computer
Programming 1-2

Intreduction o' €Chapter: 2
©OPjects and Classes

Chapter Goals

[0 understand the concepts of classes and objects

{0 realize the difference between objects and ObJECt references

o become familiar with the process of implementing classes

10 be able to implement simple methods

0 understand the purpoese and USse of constructors

[0 understand how. to access instance fields and local variables

[0 appreciate the 1mpoertance of. documentation comments

USing and Constructing ORJECTS

AN OPjectis an entity. 1n your program thatyou can. _manipulate
generally by calling: methods . FEorexample, in Chapter 1 you
Saw Now System.out Was an OPJect and you saw Now. to
manipulate it using the println method. You should think efian
objectas a Black box withiapublic Interface (the methods that
you call)and ahidden Implementation (the code and data to make
the methods Work).

USing and Constructing ORJECTS

Different: OBJECIS supportdifferent: Metheds . Eor example,
you can apply the println mMethod to the System.out O0ODJect but
not to the string object “Hello, World!® It would be an error to

call "Hello, World!".println(); . Thereason is simple:
System.out and "Hello, World!" belong to different CIASSes

The object Is an object ofithe PrintStream class
while IS an object of the String class. You can
apply the method to any GbJect olithe PrintStream class

butthe class dees not supportthe printin method.

USing and Constructing ORJECTS

ihe String class dees suppoert a numper elimethods. For. example,
the length method counts the nUMBEr G characters in a string.
hus "Hello, World!".length() IS OoKay and returns the
number. 18 . You can test this by using the statement
System.out.println("Hello, World!".length()) ;

Inthe main method.

USing and Constructing ORJECTS

0. See how te: Create:. new objects, Iet us turn te anoether: class, the
Rectangle classinthe Java classlibrary. Objects ofitype
describe ordinary rectangular shapes.

USing and Constructing ORJECTS

Note that a ISnl a rectangular. shape, Itis
a setofinumbers that describe the rectangle.
Each rectangle Is described by the X- and y-
coordinates ofiits top left corner. , ItsS width
and its Neight . 1o make anew rectangle, you
need to specify these four. values. Eor example,
yOU can make a new rectangle with top left.corner
at (5, 10), width 20, and height 30'as follews:

_new Rectangle (5, 10, 20, 30) .

Rectangle

M=

Y= A8

width =
height =

he new Operator causes the creation ofian 6PJect ofi type
Repgennag. s .« dLE 133EST-0f 5172010 a NEW OBJeCt IS called
construchivii- .. Yiin 2 four values 5, 10, 20, and 30 are the

construction paramelers: .

USing and Constructing ORJECTS

Different classes will require different. construction parameters.

0 construct a OPJECT you supply 4 numbers that
describe the position and Size ofithe rectangle. 7o describe a
object you might supply the model name and Yyear .

Car

model name =

year =

USing and Constructing ORJECTS

SOME classes letyou construct. OBJects in differentways. You
can also obtain a Rectangle object by, supplying noe parameters at all:
new Rectangle() . This constructs a (rather. useless) rectangle
with wop left cornerct (0, 0) , width O , andiheight O .

In'general; to construct any. Object youido the following:

e Usethe new operatc*

e (IVe the name ofithe class

* sSupply construction parameters (IfFany) -- you are
reguired to Use parenthesis

Using and Constructing OkJects

What can you dowithia object?. Not much, Tornow
Inichapter 4, you will learn how to' display. rectangles and other

shapes. Atthis time, you can pass a rectangle object to the
System.out.println method which will'printa description Of
the object onto the console window.

So the command

System.out.println (new Rectangle(5, 10, 20, 30));
prints the line

java.awt.Rectangle[x=5, y=10, width=20, height=30]

Constructing ©BJects Summary

Syntax:
new ClassName ()
Example:
new Rectangle(5, 10, 20, 30)
new Car ("Ford Explorer", 2004)
PUrpoSeE:
0. construct a new oPJeCt, mitialize it with the construction
parameters, and return a reference to the constructed object.

©Pject Variables

10 remembper. an object, you have to holditin an _object variable .
A Vvariable is an item ofiinformation in. MEemory. whose [ocation Is
identifiediby a symbolic name. In Java, every variable has a
particular _type thatidentifies the Kind of information it can
contain. You create avariable by giving its. _ type followed by a
name forthevariable. Forexample, Rectangle cerealBox;

defines a variable named cerealBox . The type ofithis varable is
Rectangle .

©Pject Variables

Variable names must follow a few simple rules:

Names can be made up ofi _letters , digits , and the
underscore character, . They cannot start with a numper

YOU cannot use other symbols suchas 2. or & in variable
names.

SPACES are not permitted Inside names.

YoU cannot use [resernved. words such as public . fihese
Words are reserved exclusively for their special Java
meanings.

\/ariable names are Ccase-sensitive . That is,
and are different names.

@Object Variables

Ipheglelelslglclgzitje)fl| Rectangle cerealBox; | ifle zlgkzle)ls|S ple)i

initialized’ . Thatis, it doesn't have any. Objectlocation
o Initialize avariable, youimust.use the new_ Operator which will
create an. _object and return its location

©Pject Variables

The fellowing statement will'declare and initialize the variable:
Rectangle cerealBox = new Rectangle(5, 10, 20, 30); .

The fellowing diagiam iliustrates the difference between a declared
variable and one thatis initialized at declaration. Note that when
the new oOperatoris used, an object Is created.

Rectangle cerealBox =

Rectangle cerealBox; new Rectangle (5, 10, 20, 30);
cerealBox ==[::::] Rectangle
M=
cerealBox = I I T
Y= .
width =
hneight =

@Object Variables

An object location is called an objectreference . \When a variable
contains the lecation ofian object, we say that the variable refers
to the object. ItIS important to rememper: that the

variable does not contain. the object. It refers to the object.

You can also have two objecty '~ ~~"~-*~ ** - same object.
[ihe additional’declaration’ Re cerealtox = ealBox makes
the variable xr refer.to the sa 1lBox .
Rectangle cerealBox = Rectangle
new Rectangle (5, 10, 20, 30);
Rectangle r = cerealBox; e —
1B = | : 43
cerea oxX = width =
r = I: hneight =

©Pject Variables

Ustually your. programs Use objects 1n the following ways:

e COnstruct an ebject with the new._ OpPErator

e store the reference to the object in some variable

¢ calll methods on the object variable

@Object Variables

The class has over 50 methods. Consider the
translate mMmethod WhICh MOVES the rectangle a certain distance
N the x= and y- directions. Eor example,

cerealBox. translate (15, 25); | ileVes inlshfeletziple|lsr (kS

units iithe x=direction and. 25 Units in the y-direction. Moving a

rectangle deesn't change its width or height but changes the
top-left corner.

ifiglsl elojels| Rectangle cerealBox = new Rectangle(5, 10, 20, 30);
cerealBox. translate (15, 25);

System.out.println (cerealBox) ;

pPrints

java.awt.Rectangle[x=20, y=35, width=20, height=30]

©Pject Variables

Lets turn this Inte a complete program. You need to carry out three

SIEPSE e jnyvent anew class, say. MethodTest
s sSupplya main method
¢ place Instructions inside the main method

[FOr this program, yoUu need 1o carnry. oul another step in addition to
those: you need to Import. the class from a _package

A package is a collection of. classes with arelated purpose. The

class belongs to the package Jjava.awt Where
stands forr Abstract Windowing Toolkit . 1o USse this package,

place the line import java.awt.Rectangle; atthe top ofthe
program. \Why didn't you nave to Importthe System and
String classes thatwere usedin the Hello program? These
classes are inthe java.lang package and all classes from this
package are automatically. imporied so you don't have to import
them yourselr.

@Object Variables

Complete the comments:

import java.awt.Rectangle; //include the Rectangle package

public class MoveTest //file must be named MoveTest.java
{

public static void main(String[] args)

Rectangle cerealBox = new Rectangle(5, 10, 20, 30);

.translate (15, 25); // move the rectangle
System.ofit.println (cerealBox) ; /I print moved rectangle

make a new Ohject

@Object Variables

Avdaullagiefadisiltsiciicdelofifi lRectangle cerealBox;

Code at the right. cerealBox.translate (15, 25);
The first line creates a variable named but does not use
e new OpEeratorto create a object. T[he secondline

attempts to. MOVE the rectangle butthere Is no rectangle to move.

the compiler willlcomplain that you are trying te Use an
uninitialized variable.

The remedy s to Initialize’ the variable either using a new. 0bject:

Rectangle cerealBox = new Rectangle(5, 10, 20, 30);

Of O USE an existing ODJect:

Rectangle cerealBox = anotherRectangle;

©Pject Variables

SOME programmers Use a shortcut when importing packages. You
can import. all” classes from a package with a statement such as

import packageName.*; . FOrexample,in the program above
yOU could use import java.awt.*; . We will'not use this
Statement In this course and instead IMport the SPEeCIfic package
WIth a statement such as import java.awt.Rectangle;

Defining cl CIaSS public class Greeter

In'this section we willlearn @ sayHell

how to. define yourown
class. This first class
will'contain a singie
method

A method definition contans
several parts:

e an (such as public)

e the of the method (such as String)

e the (sucin as sayHello)

s alistof ofithe method enclosed in parenthesis (the
sayHellGimethod has Ne. parameters)

e the (@& seguence of statements enclesed In

praces)

Defining cl CIaSS public class Greeter
{

The access specifier sayHello()

controels wnich other
methoeds can calll this
method. NMost methods
shouldibe declared as
_public. . Thatway

all metheds 1 your program can call them.

ing message = "Hello,World!'";
feturn message;

fhe return type Is the type ofivalue that the method returns to its
caller. The Method returns an GPJject ofitype String
namely . Some methods just execute some
statements without returning avalue. These methods are tagged
with a return type off woid

Defining a Class

Many methods depend on’ Other information. For example, the
translate method ofithe Rectangle Cclass needs to know how
faryou want to move the
rectangle horizontally and
vertically. These items
are called the
_parameters St iihc
method. Each
parameteris a _variable
yiie) 2 | 1Y oS estpreln
nName . Facielenvariables are separated by, COmmds

public class Rectangle

Defining a Class public class Greeter
{

The method body. public String sayHello()
contains statementsitie String message = "Hello,World!";|
method executes. The ‘return message;| |

methoed boedy.
contains twWwo statements.

The first statement Initializes a variable with a
o)ejjsliit IString message = "Hello,World!";

ihe second statement IS a special statement that: terminates the

method

Defining a Class public class Greeter
{

ublic| String |sayHello()
P

{

String meg$sage = "Hello,World!";

t E . .
E retiirn type Is different

than void

When the second statementis executed, the method exits .
If'the method has areturn type othei: than woid , then the return

statement must.contain a return value , namely the value that the
method sends back toits caller,. . The method returns
the objectreference storedin Message -- thatis, areference to
the "Hello, World!" string object.

Testing a Class public class Greeter
{

Tthe class can be public String sayHello()

. . {
compiled’ butit (_:ann_Ot String message = "Hello,World!";
be executed since it return message;

doesnithave a main }

method. Thatis nermal }

-- MOSt classes don‘t have a main methoed. BULYyoU can write a
testclass . A test class typically carries out the following steps:

s construct one ermore OBRJeECtS ofithe class being tested

* |nvokKe one or more methods

* printout one o more results

Test”']g a CIaSS public class GreeterTest
{

public static void main(String[] args)
The GreeterTest {
class tests the Greeter worldGreeter = new Greeter();

System.out.println fworldGreeter.sayHello()}) ;
Class.

Greeter
Notice that the main
method of .
: pflic class Greeter
CONSIRUCTS an OhjeCt Of F
fype Greeter usingthe new prblic String saylello()
T {
Operator, INVOKeS the sayHello String message = "Hello,World!'";

return message;

}

method, and' displays the
resulton the Console. }

Test”']g a CIaSS public class GreeterTest
{

public static void main(String[] args)

{

Greeter worldGreeter = new Greeter();

System.out.println (worldGreeter.sayHello());

}
}

. - public class Greeter
file Greeter.java Puelifi|slle (

to. _combine these two classes. public String sayHello()

: : {
file GreeterTest.java String message = "Hello,World!";

* make two files, one for each \ return message;
class)

e compile both files

e IUn_ the testprogram

Instance Fields

At this time all’'oRJects olitype Greeter WOUIM actthe same way.
SUPPOSE you declare a ODJEct:

Greeter greeterl = new Greeter(); | clplehinlclefersiisiziscleelgle

olo)[sljiy |Greeter greeter2 = new Greeter();

Then both and would return the same result
when you call'the method. In erder for. each
ODJect Lo return aunigue result, each object must:. Store staie

The ISthe setofivalues thatdetermine how an
ObJect reacts to. _method calls

Instance Fields

AN object Stores Its state In GNe Or more variables called
instancefields . The declaration at the

right shows an of the 1{>ublic class Greeter
class called name . An

nstance fieldiconsists ofithe following |\

parts:

® an access specifier (Uusually private)

» the type of the variable (such as String)

 the name of the variable (such as name)

Instance Fields

Each object ofia class has its own set of: _Instance fields

Foracuiols) I _ ine public class Greeter
dre tWo ORJeCtS Ofithe {

Greeter class, then each object has its
OWwn: name fieldicalled

private String name;

}

worldGreeter.name and

daveGreeter . name

worldGreeter = daveGreeter =

Greeter Greeter

name = World" name = Dave"

Instance Fields

Instance fields are generally. declared with'the aCcCess SPECIfier. as

_private. . That specifier means that they can only be accessed by

methoeds 6fithe Greeter class , not by any other method. In

particular, the name Variable can only be accessed by the
sayHello MmMethod.

In otherwords, ifithe 1nstancefields are declared as private

then all'data access must occur though the public. methods.
Thus the instance fields are effectively. _hidden from the

pProgrammer Who Uses aclass. [They would only be oficoncern to
the programmerwho Implemented’ the class. [1he process of
niding the data and providing methods for _data access is called
encapsulation. . We will'always make instance fields: private in
thiS course.

Instance Fields

Since the name instance field’is _private you cannot access the
instance field'in another class. Note the error in the revised

public class GreeterTest

{

public static void main(String[] args)

{

System.out.println|(daveGreeter.name)|;

}

}

yOUIcan acCeSS the Instance field in
PUL YOU cannol acCess Itin

Instance Fields

@nly the methoed can dCCeSS the private name
variapble. Ifwe later,add other methods to the Class, SUch
as a goodBye mMENOd, then those methods can acCess the private

dataas Well. An improved method ofithe Greeter
Class Is shown below.

public String sayHello()
{

String message = "Hello, " + name + "!";

return message;

}

Instance Fields

public String sayHello()
{

String message = "Hello, " + name + "!";

return message;

}

The + symbol denotes Sthing concatenation. an operation that

TOrMS a New string by, pasting shorter strings together, one aiter,
another. This method COMPULES a String message by combining

three strings: "Hello, " plus the string contained ini name
plus the string consisting ofian. _exclamation point. . Ifithe name
variable refers to the string , then the resulting string Is

"Hello, Dave!" .

Instance Fields

public String sayHello()
{

String = "Hello, " + name + "!";
return messgage;

}

Note that this methoed USes tWo separate objectvariables: the
locallvariable. message and the Instancefield name. A local
variable belongs to an individual: methed™ andiyou can only Use it
inside the method. Arnlinstance field belongs toa class and
yoU can use itin alllmethods ofithe class.

IS declared locally within
As a result; it can only be used within

Constructors

0. complete the Improeved Class, We need to be able to
construct. objects with different values for.the name |nstance
field. We want te Specify the name When constructing the 6bject:

Greeter worldGreeter = new Greeter ("World") ;

zlglel |Greeter daveGreeter = new Greeter ("Dave") ;

o accomplish this, We need to supply.a _constructor. 1IN the class
definition. A cConstructor SpecIfies how an object should be
initialized . e code for the constructor: Is shown below.

public Greeter (String aName)

{

name = aName;

CONSLHUCLOrS
public [Greeter |String aName)
{

N0 return type here

A constructor always has the same name as the

class ofithe Gbjects It constructs Similar te methoeds,
constructors are generally declared as: _public_ . Unlike methods
though constructors do nothave return types

Constructors are not methoeds . YoU cannot inveke a constructor
onlan existing.object . For example, the call:

worldGreeter.Greeter ("World!"); // error IS illegal_ You can
only Uuse the constructor in compination With the. _new. Operator.

Constructors

Iihe code below Is the enhanced class and the enhanced
Class WNHOSE PUrpPOSE IS to0 make sure the Greeter
Class WOIKS COIrectly.

public class Greeter public class GreeterTest

{

public static void main(String[] args

public Greeter (String aName)
{

name = aName;

Greeter worldGreeter =
new Greeter ("World") ;
ystem.out.println
(worldGreeter.sayHello());

. Greeter daveGreeter =
return message; ’ new Greeter ("Dave") ;

‘ ystem.out.println
Prlvate Strinfj name;| ' (daveGreeter.sayHello()); I

ch‘ré (ﬂ%iﬁ;ew U‘ff("jﬁ"‘th{éfi@% gnli q‘é‘ 5T~ an)fgg{
pass the par=ameter finiglel s lestcids

String message = "Hello, "
+ name + "!";

Designing the Public Interface ofia €lass

N this section We will create a class that describes the behavior ofia

bank account. BEfGre you can start programming, you need to
understand how the OBJECIS ofiyour class behave. Consider

the Kind ol operations you can canhy. cut with your.bank account;

s deposit money.

s Withdraw. money.

s (etthe current balance

Designing the Public Interface ofia €lass

In Java, these operations are expressedas methoedicalls
Ifithe variable contains a reference to a
then you willwantto call metheds such as the

rellowing:

: /I deposit $2000
: Jlwithdraw $500

JSystem.out.println (harrysChecking.getBalance()) ;

/[print the balance

That is, the class should define three methods:
deposit , withdraw , and getBalance

Designing the Public Interface ofia €lass

Next, you need to determine the parameters and return types of
these methods. Asyou can see fiom the samples, the
and methods receive a numper (dollaramount) and

return novalue . The method has no parameter,
and returns _anumber.

Java has several number types that you will'learn about in the next
chapter. The mostflexible numbertype Is called’ double .
Examples ofidoubles are , , Of

Designing the Public Interface ofia €lass

Now that you Knew you can USe double fOrthe numbertype, you
can write down the methods ofithe class:

Hpublic [void | depositfdouble amount)|
:
Hpublic |double | getsalancd ()

Designing the Public Interface ofia €lass

How do we wantto. construct a bank account? It seems
reasonaple that the statement

BankAccount harrysChecking = new BankAccount(); F Sglejtjle

CONSIrUCt an accountwith a zero balance. \What ifiwe want to
Start out with another. balance? A second constructor would be
nelpful that sets the balance to an initial value:

BankAccount harrysChecking = new BankAccount (5000) ;

Designing the Public Interface ofia €lass

SR glcig e iV/eiS KIS el el pisiiglfeifelfsd {public BankAccount() | lglel

public BankAccount (double initialBalance) ihe compiler

figures outwnich constructor to call’by 100King atthe parameters .
For example, iiyou call then the compiler

slidicsiglehilsingegisiigiiaiel i ifve)if ezl [new BankAccount (5000)

then'the compiler picks the second constructor: Butifiyou call

new BankAccount ("lotsa moolah") pFhigisipiigicielelpplelilsifefiplifztics zlp)

Error message since there IS no constructor with'a _ string._
parameter.

Designing the Public Interface ofia €lass

TThese constructors and methods form the publicinterface ofithe
class. Here s now you can:

// transfer money from one account to another
double transferAmount = 500;
momsSavings.withdraw (transferAmount) ;
harrysChecking.deposit (transferAmount) ;

/| add interest to a savings account

double interestRate = 5; // 5% interest

double interestAmount = momsSavings.getBalance()
* interestRate / 100;
momsSavings.deposit (interestAmount) ;

Designing the Public Interface ofia €lass

AS yOU can See, youican use public objects ofithe
Class 1o carry out Important tasks, withoUt kKnewinghow. the

objects store theirdata or how the
methods dotheirWwork: . This process of determining the feature
setofiaclass is called abstraction. . Whenyou design the
_public interface for a class, youineed to find What:operations are
essential to manipulate ebjects In your. program.

Overlieading

\When the same name IS used for more than one method or;

constructor, the name I1s overloaded . IS Is common for.
constructors since all constructors have the same name -- the
name of the class . In Java, you can overload methoeds and

constructors providedthe parametertypes are different.

©Overicading

Ihe code at the right: shows class PrintStream
that the class PrintStream [K
defines many. methods, all public void println(double a) {...}
called println , to print
Various number. types and'to
pPrint objects.

\When the method IS called with a statement such as
System.out.println(x) ; | iglcieelpielil=ie [e)eli¢s ziiplciaV e)sie)f > o

If ISa String the first method is called. If is a double

the second methodis called: |fi = does not match the parameter.
types for any ofithe methods, a _compiler error. IS generated.

public void println(String s) {...}

For overloading puUrposes, the type ofithe return value does not
matter. YOU cannot have two methods with identicall names. and
_parametertypes butdifferent return values .

SPEcIfying the Implementation ofi a Class

Its now time to supply the Implementation. . You already know you
need to supply a class with these ingredients:

public class BankAccount

\We already know the methods and constructors we want. The
Instance fields are used to store the ORJect state . In this case
the state Is the account. balance . So asingle instance field i1s
sufficient; private double balance; .

SPECIyIing the Implementation ofia Class

Note that the instance field Is declared With the aCCeSS SPecIfier
private . [hat means thatthe balance can be accessed only by,
constructors and methods ofithe SalME c¢lass and noet by any.
method or constructor, ofia difierent: class. How the account
balance is maintained'is a private 1mplementation detail’ ofithe
class. Recall'that the practice of hiding the implementation details
and providing methods for data access is called. _encapsulation

ihe primary benefit ofithe encapsulation mechanism is the guarantee

that an object cannot accidentally be putiinto an: INCOMfECt state.
For example, SUpPOSEe you want to make sure that a bank accountis

Never: OVerdrawn . You can implementthe withdraw method

SO that It refuses to carry out a withdrawal thatwould resultin a
negative balance

SPEcIfying the Implementation ofi a Class

Here IS the method

public void deposit (double amount)

double newBalance

{

Balance [newBalance;

and here is the defaull. CLiSuuClo S ione Vv co-ameters)

public BankAccount{()|

balance = 0;

ihe code for. the SEGEEYW @ GG ENURIE OfEIIE E)E

SPEcIfying the Implementation ofi a Class

A COMIMON ENror IS to try to: ESEet. an object by calling a constructor.
The constructor s invoked only:whenian objectis first created

Note the code below WhICh contains an error.

BankAccount harrysChecking = new BankAccount();
harrysChecking.withdraw (500) ;

harrysChecking.BankAccount();

[

e constructor sets a NEW. accountto a Zerno: bhalance, butyou
cannot ivoke the constructoron an EXISting object. The remedy
IS simple: Makea new 0DbJect and GVerwrite the current one:

harrysChecking = new BankAccount(); // ok

Variable IyVpEeSs

\We have considered three types ofivariables in this chapter:
instance fields , local'variables |, and parameter variables

These variables are similar.to each other but have some differences .

The first differenceis lifetime . An instance field belongs to an
Object. . Each object has its own copy. 6f every instance field.
When an object is constructed, its instance fields are Created
They stay alive until no. _method’ uses the object any more.

Local and parameter variables belongitora method . Whenithe
method starts, these variables cometo life . \When the method
exits, these variables die .

Variable IyVpEeSs

Jihe second difference between local and/instance variables Is
nitialization . You must initialize alll! 1ecal’ variables.
Ifiyou don't, the compllerr complains when you try to USE it.

Parameter. variables are initialized with the values that are
supplied in the method call

Instance fields are initialized with'a _defaultvalue ifiyou don't
explicitly;Set.them in a constructor. Instance fields that are
numbers are initialized'tor 0 . ©bject references are initialized to a
special value called: null . [fan object reference is null; then it
refers to. N0 Object . It 1S a matter. 0f:geod style to initialize

EVELNY. Instance field in. EVEerYy: constructor.

Variable IyVpEeSs

Consider the “lazy: constructor snewn at the rngntfor the
class. Since name IS an
public class Greeter
O type (
whichiis an. 6BJect. . when public Greeter() { } // do nothing

the constructor. does not
nitialize It, willhave a B
default value off null .

private String name;

When you call'the method it will return. "Hello, null!" .

EXplicit and Implicit Method Parameters

Have a |oek at a particular invecation ofithe method:

momsSavings |deposif{(500) [[VANIS(el [efe)i¢=iniplNele)el=hielfdal=

method at the rnant.

amount IS Setto 500
when the

method starts. SINCE
We deposit the money.
INt0. momsSavings , must mean mom=Savings.balance

So the call'to depends on two variables: the OBJect to
Which refers and the value 500.

EXplicit and Implicit Method Parameters

public void deposit (double amount)
{

double newBalance = balance + amount;

balance = newBalance;

fhe amount parameterinside the parenthesis is called the
explicit. parameter.because it Is explicitly named inithe method
definition. HOWEVETr, the reference to the ODJECT IS

notexplicitin the method definition --itis called the implicit
parameter.

Ifyouineed to, yoU can acCess the iImplicit parameter with the keyword
this . For example, In the preceding method Was SEet to
momsSavings adnd amountto 500 . The statement

double newBalance = balance + amount; | zlgitlzll\V pplerElg)s

double newBalance = this.balance + amount;

