Introduction to Science

Outline

- What is science?
- Types of sciences
- Systems of measure
- Scientific measuring
- Scientific measuring length
- Scientific measuring mass
- Scientific measuring volume
- Scientific method
- Parts of a science experiment
- Theory vs. Law

What is science?

- <u>Science</u>: a way to solve problems and answer questions
 - a way to understand the world we live in
 - usually end with –logy
 - meaning "the study of"
 - prefix of the word tells what it studies
 - <u>example</u>: entymology

The study of insects

Types of Sciences

- Biology study of living things
- 2. Chemistry study of chemicals and how they combine
- <u>3. Ecology</u> study of the environment
- <u>4. Microbiology</u> study of very small living things

Types of Sciences

- 5. Zoology study of animals
- <u>6. Archaeology</u> study of ancient artifacts and remains
- <u>7. Astronomy</u> study of outer space
- <u>8. Genetics</u> study of genes/DNA

Systems of Measure

- 2 Common Measurement Systems
 - American System
 - system we use in the USA
 - <u>examples of units</u>: feet, yards, inches, pounds, gallons
 - Metric System
 - system used in all other countries of the world
 - used by scientists (we will use in class)
 - <u>examples of units</u>: meter, gram, liter, milliliter

- 4 areas of scientific measuring (metric system)
 - <u>Length</u>: distance from 1 place to another
 - units we use to measure
 - Meter (basic unit)
 - Centimeter
 - Millimeter
 - Kilometer

- 4 areas of scientific measuring (metric system)
 - <u>Mass</u>: how much of something there is
 - units we use to measure
 - Gram
 - Milligram
 - Kilogram

- 4 areas of scientific measuring (metric system)
 - <u>Volume</u>: amount of liquid an object can hold
 - units we use to measure
 - Liter
 - Milliliter

- 4 areas of scientific measuring (metric system)
 - <u>Temperature</u>: how hot or cold something is
 - units we use to measure
 - Celsius

- Metric system prefixes
 - Kilo = 1000
 - Hecto = 100
 - Deka = 10
 - Deci = 1/10
 - Centi = 1/100
 - Milli = 1/1000

- Metric system abbreviations
 - Meter = m
 - Kilometer = km
 - Hectometer = hm
 - Dekameter = dam
 - Decimeter = dm
 - Cenitmeter = cm
 - Millimeter = mm

- Metric system abbreviations
 - Gram = g
 - Kilogram = kg
 - Hectogram = hg
 - Dekagram = dag
 - Decigram = dg
 - Centigram = cg
 - Milligram = mg

- Metric system abbreviations
 - Liter = L
 - Kiloliter = kL
 - Hectoliter = hL
 - Dekaliter = daL
 - Deciliter = dL
 - Centiliter = cL
 - Milliliter = mL

Scientific Measuring - Length

- <u>Length</u>: distance from 1 place to another
 - units used (both american and metric system)
 - American System inches (in.), feet (ft.), yards, miles
 - Metric System meter (m), centimeter (cm), millimeter (mm), kilometer (km)

Scientific Measuring - Length

- Length: distance from 1 place to another
 - how to measure make sure your "zero" line is lined up with your starting point
 - <u>inches</u> each little line on the ruler equals 1/16th of an inch

• <u>centimeters</u> accelentiate line on the miles equals .1 centimeters 0 cm = 1 2 3 4

Scientific Measuring – Mass

- <u>Mass</u>: how much of something there is
 - Similar to weight
 - What instrument do we use to measure mass?
 - triple beam balance
 - Units used (metric system only)
 - Grams (g)

Scientific Measuring – Mass

- Steps for using the balances
 - 1. Place the object on the pan
- 2. Move the sliders to determine the mass of the object
 - start with the largest slider and work your way down to the smallest slider
 - sliders must be in the notches
- 3. Add up the numbers to determine the total mass

Scientific Measuring – Mass

Scientific Measuring – Volume

- <u>Volume</u>: amount of liquid an object can hold
 - What do we use to measure volume?
 - Beaker
 - Graduated Cylinder
 - Erlenmeyer Flask
 - Units used (metric system only)
 - Liters (L)
 - Milliliters (mL)

Scientific Measuring – Volume

- How to measure volume
 - Read the bottom of the meniscus (curved line)
 - Each little line equals 1 mL (if it is in between lines make it .5)

Scientific Method

- The scientific method is a way to solve problems using 6 steps
 - all scientists use the same process
- 2 important ideas
 - <u>critical thinking</u>: use skills to solve problems
 - separate important information from unimportant information
 - <u>organization</u>: the 6 steps that must be followed

6 Steps of the Scientific Method

- 1. State the Problem
 - What do you want to figure out?
- 2. Research
 - Gather information about topic
- 3. Make a hypothesis
 - <u>Hypothesis</u>: an *educated* guess that can be tested
 - What do you think will happen?

6 Steps of the Scientific Method

- 4. Design and conduct an experiment
 - How will the hypothesis be tested?
- 5. Analyze data from experiment
 - What did the experiment tell you?
 - Data can be quantitative (numbers) or qualitative (observations)
- 6. Draw conclusions
 - Was your hypothesis correct or incorrect?
 - If correct, repeat your experiment to confirm results
 - If incorrect, change your hypothesis and test again

Models of Scientific Method

- <u>My example</u>: Chemical reactions based on pH levels
 - State the problem
 - Will lemon juice cause milk to spoil faster than normal?
 - Hypothesis
 - If lemon juice is added to milk, then it will cause it to spoil faster than if nothing was added to it.
 - Experiment
 - Add 20ml of lemon juice to 100 ml of milk
 - Analyze data
 - Draw conclusions

Parts of a Science Experiment

- <u>Control</u>: what you compare your results to
 Part of your experiment that remains the same
- Independent Variable: what you are testing in the experiment
 - Part of your experiment that is changed to cause some sort of effect
- <u>Dependent Variable</u>: what you are measuring
 - The effect caused by the independent variable

Theory vs. Law

- Scientists use experiments to develop theories and laws
- <u>Scientific Theory</u>: an explanation of how things happen based on scientific knowledge
 - Based on many experiments and observations
 - Accepted to be true, but can be changed based on new information
 - <u>Example</u>: Theory of Evolution
 - Explains how living things have changed over millions of years

Theory vs. Law

- <u>Scientific Law</u>: statement about how things work that is true <u>all</u> of the time
 - Tells what will happen
 - Example: Law of Gravity
 - Explains how objects exert a gravitational force (pull) on other objects