

[INTERIM] CSTA K–12
COMPUTER SCIENCE

STANDARDS
REVISED 2016

CSTA STANDARDS TASK FORCE

Computer Science Teachers Association (CSTA)
The Association for Computing Machinery, Inc. (ACM)

2 Penn Plaza, Suite 701
New York, NY 10121

Copyright © 2016 by the Computer Science Teachers Association (CSTA) and the Association
for Computing Machinery, Inc. (ACM). Permission to make digital or hard copies of portions of
this work for personal or classroom use is granted without fee, provided that the copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted.

To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Obtain permission to republish from Computer Science

Teachers Association (CSTA) by submitting a written request to
customerservice@csteachers.org.

For other copying of articles that carry a code at the bottom of the first or last page, copying is
permitted, provided that the per-copy fee indicated in the code is paid through the Copyright

Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

CSTA/ACM ISBN: # 978-1-4503-4762-4
CSTA/ACM Order Number: #999160
Cost: $7.00 US/$8.00 International

Additional copies may be ordered prepaid from:

CSTA Order Department

Attn: CSTA Standards
PO Box 767, Springfield, OR 97477

Email: customerservice@csta-hq.org
Phone: +1-800-342-6626 | Fax: +1-541-944-1318 IN
TERIM

 D
RAFT

2015–2016 CSTA STANDARDS REVISION TASK FORCE

Leadership

Deborah Seehorn
Co-Chair, CSTA Board of Directors Past Chair,

Retired
North Carolina Department of Public Instruction

Tammy Pirmann
Co-Chair, CSTA Board of Directors School District

Representative, Springfield Township, PA

K–5 Team

Todd Lash
Grade Level Lead, K–5

 Instructional Coach and Teaching Specialist for Computer Science and Computational Thinking
Kenwood Elementary, IL

Leticia Batista
Kindergarten Teacher

Apple Distinguished Educator
McKinna Elementary, Oxnard, CA

Dylan Ryder
Intermediate Division

Educational Technologist
The School at Columbia

University

Vicky Sedgwick
 K–8 Technology Teacher

and Tech Trainer
St. Martin's Episcopal School, CA

6–8 Team

Irene Lee
Grade Level Lead, 6–8

Research Scientist
MIT's Scheller Teacher Education Program/Education Arcade, MA

Dianne O’Grady-Cunniff
Instructional Specialist for Computer Science and

Technology Education
Charles County Public Schools, MD

Bryan Twarek
Computer Science Coordinator

San Francisco Unified School District

9–12 Team

Daniel Moix
Grade Level Lead, 9–12

Arkansas K–12 Computer Science Education Specialist
Arkansas School for Mathematics, Sciences & Arts

Julia Bell
Associate Professor of Computer Science

Walters State Community College, TN

Laura Blankenship
Chair of Computer Science and

Interim Dean of Academic Affairs
The Baldwin School, PA

Lori Pollock
Professor of Computer and Information Sciences

University of Delaware

Chinma Uche
Computer Science and Math Teacher

Greater Hartford Academy of Mathematics and
Science and CREC's Academy of Aerospace and

Engineering, CT

IN
TERIM

 D
RAFT

ACKNOWLEDGEMENTS

The 2015–2016 CSTA K–12 CS Standards Review Task Force Co-Chairs gratefully
acknowledge the pioneers in K–12 computer science education who contributed to the
revision of the CSTA K–12 CS Standards. The groups listed below graciously shared
their time and expertise with the task force members, thereby providing inspiration and
guidance as the revisions took place. We salute you for your dedication to K–12
computer science education and appreciate your collaborative spirit.

 2015–2016 CSTA K–12 CS Standards Revision Task Force Members
 CSTA Membership Community
 Achieve
 Code.org
 K–12 CS Framework
 Florida Department of Education
 Maryland CS Matters Steering Committee
 Washington Department of Education and University of Washington CS Faculty
 Anthony Owen, Arkansas Department of Education
 Jim Stanton, MassCAN
 Volunteer Reviewers, including

o Chris Stephenson
o Deepa Muralidhar
o Sheena Vaidyanathan
o Debbie Carter

We also wish to extend our heartfelt gratitude to Google, one of CSTA’s most
supportive partners. Thank you for providing us with the capacity to work on this
important project. We are grateful for your contributions and support.

DEDICATION

The 2015–2016 CSTA Standards Revision Task Force dedicates this revision of the
CSTA K–12 Computer Science Standards to our friend and colleague, Karen Marie
Putman. Karen was an ardent supporter of CSTA and the CSTA K–12 CS
standards. She was a Computer Science teacher at the University of Chicago
Laboratory School, where she had taught for 45 years. She was one of the earliest K–8
Computer Science educators, transitioning from teaching German to teaching Logo
Programming.

Karen enthusiastically joined the 2015–2016 CSTA Standards Revision Task Force in
early September 2015. She was serving as the K–5 Grade Level Lead on the task force
at the time of her sudden and untimely death. We have lost a special CS educator who
had much history and knowledge in the field of K–8 CS education. The task force
members wish to dedicate these standards in memory of Karen, who would have loved
to see the standards come to fruition.

IN
TERIM

 D
RAFT

TABLE OF CONTENTS

EXECUTIVE SUMMARY ... 6

INTRODUCTION ... 7

Purpose & Objectives
Revision Process
Implementation Challenges
Conclusion

INTERIM CSTA K–12 COMPUTER SCIENCE STANDARDS 9

Level 1 (Grades K–5) .. 9
Level 2 (Grades 6–8) ... 15
Level 3A (Grades 9–10) .. 19
Level 3B (Grades 11–12) ... 25

APPENDIX A: GLOSSARY OF TERMS ... 31

APPENDIX B: LEGEND FOR STANDARDS IDENTIFIERS 39

IN
TERIM

 D
RAFT

6

EXECUTIVE SUMMARY

Although the recent flurry of activity and exposure around computer science (CS)
education has increased visibility in recent years, the general public, administration, and
most legislators are not as well educated about CS as they should be, and a serious
shortage of information about computer science exists at all levels and may continue
into the foreseeable future. The [Interim] CSTA K–12 Computer Science Standards aim
to help address these problems. They provide a guide within which state departments of
education and school districts can revise their curricula to better address the need to
educate young people in this important subject area.

These interim standards provide a three-level guide for computer science. The first two
levels are aimed at grades K–5 and 6–8, respectively. It is expected that the learning
outcomes in Level 1 (K–5) will be addressed cross-curricularly, that is, in the context of
other academic subjects. The learning outcomes in Level 2 (6–8) may be addressed
either cross-curricularly or in discrete computer science courses. Level 3 is divided into
two separate levels. Level 3A (9–10) represents what all students should know and be
able to do by the time they graduate high school. Level 3B (11–12) represents the
progression of learning for students who express an interest in further study of computer
science.

We believe that computational thinking is a problem solving methodology that expands
the realm of computer science into all disciplines, providing a distinct means of
analyzing and developing solutions to problems that can be solved computationally.
With its focus on abstraction, automation, and analysis, computational thinking is a
core element of the broader discipline of computer science and for that reason it is
interwoven through these computer science standards at all levels of K–12 learning.

These recommendations are not made in a vacuum. We understand the serious
constraints under which school districts are operating and the uphill battle that computer
science faces in the light of other priorities, as well as time and budget constraints.
Many follow-up efforts are still needed, however, to sustain the momentum we hope
these standards will generate. Teacher professional development, curriculum
innovation, in-class testing, textbook and website development, and dissemination are
but a few of the challenges.

We hope these standards will serve as a catalyst for widespread discussions and the
initiation of many projects that can take the evolution of K–12 computer science to the
next level. We invite you to read the entire document, and then to take part in this
discussion in a way that mutually benefits both you and the K–12 education community.
More information about ongoing activities to support computer science education in K–
12 can be found at http://www.csteachers.org

IN
TERIM

 D
RAFT

7

INTRODUCTION

Purpose & Objectives

The purpose of this document is to set forth, at all stages of their learning, the knowledge and skills that
students must have to enable them to thrive in this new global information economy. It defines a set of
national standards for K–12 computer science and suggests steps that will be needed to enable their
wide implementation. It is intended to introduce the principles and methodologies of computer science
to all students, whether they are college bound or career bound after high school. The interim
standards outlined in this document address the entire K–12 range. They complement existing K–12
computer science and IT curricula where they are already established, especially the advanced
placement (AP) computer science curricula (AP, 2010). Additionally, the standards complement existing
curricula in other disciplines.

The Interim K–12 CS Standards are intended to:

1. introduce the fundamental concepts of computer science to all students, beginning at the
elementary school level;

2. present computer science at the secondary school level in a way that will be both accessible
and worthy of a computer science credit, or, for the Level 3B courses, as a required graduation
credit for math or science;

3. offer additional secondary-level computer science standards that will allow interested students
to study facets of computer science in depth and prepare them for entry into a career or college;

4. increase the knowledge of computer science for all students, especially those who are members
of underrepresented groups.

Revision Process

All drafts of this report have been informed by feedback from many sources; we hope that this interim
draft will receive widespread dissemination and continued scrutiny from everyone who has interests or
experience in K–12 computer science education. To that end, these standards are published online,
along with feedback that has been actively sought from many professional organizations, curriculum
experts, and community members. For more information on the process, please visit the CSTA website
at http://www.csteachers.org/CSTA_Standards.

We recognize that many of the recommendations in this report are ambitious but we believe that they
are critical to ensuring that students achieve the necessary level of knowledge, skills, and experience.
We offer this work as a comprehensive and coherent set of standards—an ideal toward which many
districts can evolve over time. This report thus provides a catalyst for a long-term process. It defines the
“what” from which the “how” can follow during the next several years.

Implementation Challenges

Teaching any subject effectively depends on the existence of sound learning standards for students,
explicit teacher certification standards, appropriate teacher professional development programs, and
effective curricular materials. K–12 computer science education faces unique challenges along these
lines.

For schools to widely implement these standards, work is needed in three important areas: teacher
preparation, state-level content standards, and curriculum materials development. In addition, persons
in local and state leadership positions must acknowledge the importance of computer science
education for the future of our society. States and accrediting organizations should make this a factor in
overall school accreditation. Some states have begun to establish computer science content standards,
define models for teacher certification, provide in-service professional development in computer
science, and experiment with developing new curricular materials. However, a much wider and
continued effort and commitment are required.

IN
TERIM

 D
RAFT

8

Improving computer science education is a significant challenge that will require attention and
interventions from multiple institutions. Professional organizations in computer science can make an
important contribution. CSTA, for example, is a professional organization that supports and promotes
the teaching of computer science and other computing disciplines. CSTA provides a large number of
programs that include the development and dissemination of learning resources, the provision of
professional development, and advocating for state and federal level policies to improve computer
science education. Other organizations, such as ACM, the IEEE Computer Society, institutions of
higher education, and national and local teacher organizations, can also work toward addressing these
issues in K–12 computer science education.

Industry is also deeply affected by pipeline issues and the need to produce workers who have the skills
needed to support and build the technology tools of the future. It is therefore in their best interest to
contribute significantly to improving access and quality of computer science courses in K–12.

Conclusion

Computer science education is a dynamic discipline. This document serves as an interim draft
document and represents changes to the previous standards in order to address recent changes in the
computer science education landscape. The launch of the K–12 CS Framework, the Maker movement,
and a national focus on cybersecurity are just some of the changes that are still in motion during this
document’s release.

Due to rapid growth and changes in our field, computer science standards cannot be static. These
standards must be reviewed and updated on a regular basis, and not considered complete and
finalized. CSTA is committed to an inclusive, iterative process that allows multiple drafts and revisions
of the CSTA K–12 CS Standards. CSTA is one of several supporters of the K–12 CS Framework
project. The Standards influence the Framework and the Framework influences the Standards. For
more information, visit the CSTA Standards FAQ at www.csteachers.org/2016standards.

It is not an exaggeration to say that our lives depend upon computer systems and the people who
maintain them to keep us safe on the road and in air, help physicians diagnose and treat health care
problems, and play a critical role in the design of new drug therapies. A fundamental understanding of
computer science enables students to be both educated users of technology and innovators capable of
designing computing systems to improve the quality of life for everyone.

We understand that many obstacles lie in the way of the ideal of a K–12 computer science education
for all students. How will room be found in the jam-packed curriculum? How will qualified teachers be
recruited, trained, and credentialed? In the world of standards-centric evaluation of schools, should
computer science support existing standards, or should new ones be designed for computer science?
These and other questions and challenges are significant, but so are the benefits—to students and to
society—of computer science finding its rightful place as a component of high-quality education for all
students.
 IN

TERIM
 D

RAFT

INTERIM 2016 CSTA K–12 CS Standards
Level 1 (Grades K–5)

The 2011 CSTA K–12 CS Standards were categorized into five conceptual strands (Computational Thinking, Collaboration, Computing Practice & Programming,
Computer & Communication Devices; and Community, Global & Ethical Impacts). The Interim 2016 CSTA K–12 CS Standards are categorized into five concepts
of the K–12 CS Framework, which is currently under development (Computing Systems, Networks and the Internet, Algorithms and Programming, Data and
Analysis, and Impacts of Computing). There is some overlap between strands and concepts, but they are not identical.

9 | I N T E R I M C S T A K ‐ 1 2 C S S t a n d a r d s : L e v e l 1
 J u l y 2 0 1 6

Grades Identifier Interim CSTA K–12 CS Standard
Framework

Concept
Framework

Practice

K–2 1A-A-7-1 Give credit when using code, music, or pictures (for example) that were created by others.
Algorithms and

Programs
Communicating

about Computing

K–2 1A-A-5-2
Construct programs, to accomplish a task or as a means of creative expression, which
include sequencing, events, and simple loops, using a block-based visual programming
language, both independently and collaboratively (e.g., pair programming).

Algorithms and
Programs

Creating
Computational

Artifacts

K–2 1A-A-5-3
Plan and create a design document to illustrate thoughts, ideas, and stories in a
sequential (step-by-step) manner (e.g., story map, storyboard, sequential graphic
organizer).

Algorithms and
Programs

Creating
Computational

Artifacts

K–2 1A-A-4-4
Use numbers or other symbols to represent data (e.g., thumbs up/down for yes/no, color
by number, arrows for direction, encoding/decoding a word using numbers or
pictographs).

Algorithms and
Programs

Developing and
Using Abstractions

K–2 1A-A-3-5
Decompose (break down) a larger problem into smaller sub-problems with teacher
guidance or independently.

Algorithms and
Programs

Recognizing and
Defining

Computational
Problems

K–2 1A-A-3-6 Categorize a group of items based on the attributes or actions of each item, with or
without a computing device.

Algorithms and
Programs

Recognizing and
Defining

Computational
Problems

 IN

TERIM
 D

RAFT

INTERIM 2016 CSTA K–12 CS Standards
Level 1 (Grades K–5)

The 2011 CSTA K–12 CS Standards were categorized into five conceptual strands (Computational Thinking, Collaboration, Computing Practice & Programming,
Computer & Communication Devices; and Community, Global & Ethical Impacts). The Interim 2016 CSTA K–12 CS Standards are categorized into five concepts
of the K–12 CS Framework, which is currently under development (Computing Systems, Networks and the Internet, Algorithms and Programming, Data and
Analysis, and Impacts of Computing). There is some overlap between strands and concepts, but they are not identical.

10 | I N T E R I M C S T A K ‐ 1 2 C S S t a n d a r d s : L e v e l 1
 J u l y 2 0 1 6

Grades Identifier Interim CSTA K–12 CS Standard
Framework

Concept
Framework

Practice

K–2 1A-A-3-7
Construct and execute algorithms (sets of step-by-step instructions) that include
sequencing and simple loops to accomplish a task, both independently and
collaboratively, with or without a computing device.

Algorithms and
Programs

Recognizing and
Defining

Computational
Problems

K–2 1A-A-6-8
Analyze and debug (fix) an algorithm that includes sequencing and simple loops, with or
without a computing device.

Algorithms and
Programs

Testing and Refining

K–2 1A-C-7-9
Identify and use software that controls computational devices (e.g., use an app to draw
on the screen, use software to write a story or control robots).

Computing
Systems

Communicating
about Computing

K–2 1A-C-7-10
Use appropriate terminology in naming and describing the function of common computing
devices and components (e.g., desktop computer, laptop computer, tablet device,
monitor, keyboard, mouse, printer).

Computing
Systems

Communicating
about Computing

K–2 1A-C-6-11
Identify, using accurate terminology, simple hardware and software problems that may
occur during use (e.g., app or program not working as expected, no sound, device won't
turn on).

Computing
Systems Testing and Refining

K–2 1A-D-7-12 Collect data over time and organize it in a chart or graph in order to make a prediction. Data and Analysis Communicating
About Computing

K–2 1A-D-4-13 Use a computing device to store, search, retrieve, modify, and delete information and
define the information stored as data. Data and Analysis Developing and

Using Abstractions

K–2 1A-D-4-14 Create a model of an object or process in order to identify patterns and essential
elements (e.g., water cycle, butterfly life cycle, seasonal weather patterns). Data and Analysis Developing and

Using Abstractions IN
TERIM

 D
RAFT

INTERIM 2016 CSTA K–12 CS Standards
Level 1 (Grades K–5)

The 2011 CSTA K–12 CS Standards were categorized into five conceptual strands (Computational Thinking, Collaboration, Computing Practice & Programming,
Computer & Communication Devices; and Community, Global & Ethical Impacts). The Interim 2016 CSTA K–12 CS Standards are categorized into five concepts
of the K–12 CS Framework, which is currently under development (Computing Systems, Networks and the Internet, Algorithms and Programming, Data and
Analysis, and Impacts of Computing). There is some overlap between strands and concepts, but they are not identical.

11 | I N T E R I M C S T A K ‐ 1 2 C S S t a n d a r d s : L e v e l 1
 J u l y 2 0 1 6

Grades Identifier Interim CSTA K–12 CS Standard
Framework

Concept
Framework

Practice

K–2 1A-I-7-15
Compare and contrast examples of how computing technology has changed and
improved the way people live, work, and interact.

Impacts of
Computing

Communicating
about Computing

K–2 1A-N-2-16
Use computers or other computing devices to connect with people using a network (e.g.,
the Internet) to communicate, access, and share information as a class.

Networks and the
Internet

Collaborating

K–2 1A-N-7-17 Use passwords to protect private information and discuss the effects of password
misuse.

Networks and the
Internet

Communicating
about Computing

IN
TERIM

 D
RAFT

INTERIM 2016 CSTA K–12 CS Standards
Level 1 (Grades K–5)

The 2011 CSTA K–12 CS Standards were categorized into five conceptual strands (Computational Thinking, Collaboration, Computing Practice & Programming,
Computer & Communication Devices; and Community, Global & Ethical Impacts). The Interim 2016 CSTA K–12 CS Standards are categorized into five concepts
of the K–12 CS Framework, which is currently under development (Computing Systems, Networks and the Internet, Algorithms and Programming, Data and
Analysis, and Impacts of Computing). There is some overlap between strands and concepts, but they are not identical.

12 | I N T E R I M C S T A K ‐ 1 2 C S S t a n d a r d s : L e v e l 1
 J u l y 2 0 1 6

Grades Identifier Interim CSTA K–12 CS Standard
Framework

Concept
Framework

Practice

3–5 1B-A-2-1
Apply collaboration strategies to support problem solving within the design cycle of a
program.

Algorithms and
Programs

Collaborating

3–5 1B-A-7-2
Use proper citations and document when ideas are borrowed and changed for their own
use (e.g., using pictures created by others, using music created by others, remixing
programming projects).

Algorithms and
Programs

Communicating about
Computing

3–5 1B-A-5-3
Create a plan as part of the iterative design process, both independently and with diverse
collaborative teams (e.g., storyboard, flowchart, pseudo-code, story map).

Algorithms and
Programs

Creating
Computational

Artifacts

3–5 1B-A-5-4

Construct programs, in order to solve a problem or for creative expression, that include
sequencing, events, loops, conditionals, parallelism, and variables, using a block-based
visual programming language or text-based language, both independently and
collaboratively (e.g., pair programming).

Algorithms and
Programs

Creating
Computational

Artifacts

3–5 1B-A-5-5 Use mathematical operations to change a value stored in a variable.
Algorithms and

Programs

Creating
Computational

Artifacts

3–5 1B-A-3-6 Decompose (break down) a larger problem into smaller sub-problems, independently or
in a collaborative group.

Algorithms and
Programs

Recognizing and
Defining

Computational
Problems IN

TERIM
 D

RAFT

INTERIM 2016 CSTA K–12 CS Standards
Level 1 (Grades K–5)

The 2011 CSTA K–12 CS Standards were categorized into five conceptual strands (Computational Thinking, Collaboration, Computing Practice & Programming,
Computer & Communication Devices; and Community, Global & Ethical Impacts). The Interim 2016 CSTA K–12 CS Standards are categorized into five concepts
of the K–12 CS Framework, which is currently under development (Computing Systems, Networks and the Internet, Algorithms and Programming, Data and
Analysis, and Impacts of Computing). There is some overlap between strands and concepts, but they are not identical.

13 | I N T E R I M C S T A K ‐ 1 2 C S S t a n d a r d s : L e v e l 1
 J u l y 2 0 1 6

Grades Identifier Interim CSTA K–12 CS Standard
Framework

Concept
Framework

Practice

3–5 1B-A-3-7
Construct and execute an algorithm (set of step-by-step instructions) that includes
sequencing, loops, and conditionals to accomplish a task, both independently and
collaboratively, with or without a computing device.

Algorithms and
Programs

Recognizing and
Defining

Computational
Problems

3–5 1B-A-6-8
Analyze and debug (fix) an algorithm that includes sequencing, events, loops,
conditionals, parallelism, and variables.

Algorithms and
Programs

Testing and Refining

3–5 1B-C-7-9
Model how a computer system works. [Clarification: Only includes basic elements of a
computer system, such as input, output, processor, sensors, and storage.]

Computing
Systems

Communicating about
Computing

3–5 1B-C-7-10
Use appropriate terminology in naming internal and external components of computing
devices and describing their relationships, capabilities, and limitations.

Computing
Systems

Communicating about
Computing

3–5 1B-C-6-11
Identify, using accurate terminology, simple hardware and software problems that may
occur during use, and apply strategies for solving problems (e.g., reboot device, check for
power, check network availability, close and reopen app).

Computing
Systems Testing and Refining

3–5 1B-D-5-12 Create a computational artifact to model the attributes and behaviors associated with a
concept (e.g., solar system, life cycle of a plant). Data and Analysis

Creating
Computational

Artifacts

3–5 1B-D-5-13 Answer a question by using a computer to manipulate (e.g., sort, total and/or average,
chart, graph) and analyze data that has been collected by the class or student. Data and Analysis

Creating
Computational

Artifacts IN
TERIM

 D
RAFT

INTERIM 2016 CSTA K–12 CS Standards
Level 1 (Grades K–5)

The 2011 CSTA K–12 CS Standards were categorized into five conceptual strands (Computational Thinking, Collaboration, Computing Practice & Programming,
Computer & Communication Devices; and Community, Global & Ethical Impacts). The Interim 2016 CSTA K–12 CS Standards are categorized into five concepts
of the K–12 CS Framework, which is currently under development (Computing Systems, Networks and the Internet, Algorithms and Programming, Data and
Analysis, and Impacts of Computing). There is some overlap between strands and concepts, but they are not identical.

14 | I N T E R I M C S T A K ‐ 1 2 C S S t a n d a r d s : L e v e l 1
 J u l y 2 0 1 6

Grades Identifier Interim CSTA Standard
Framework

Concept
Framework

Practice

3–5 1B-D-4-14
Use numeric values to represent non-numeric ideas in the computer (binary, ASCII, pixel
attributes such as RGB).

Data and Analysis
Developing and Using

Abstractions

3–5 1B-I-7-15

Evaluate and describe the positive and negative impacts of the pervasiveness of
computers and computing in daily life (e.g., downloading videos and audio files,
electronic appliances, wireless Internet, mobile computing devices, GPS systems,
wearable computing).

Impacts of
Computing

Communicating about
Computing

3–5 1B-I-7-16 Generate examples of how computing can affect society, and also how societal values
can shape computing choices.

Impacts of
Computing

Communicating about
Computing

3–5 1B-I-1-17 Seek out and compare diverse perspectives, synchronously or asynchronously, to
improve a project.

Impacts of
Computing

Fostering an Inclusive
Computing Culture

3–5 1B-I-1-18 Brainstorm ways in which computing devices could be made more accessible to all users. Impacts of
Computing

Fostering an Inclusive
Computing Culture

3–5 1B-I-1-19
Explain problems that relate to using computing devices and networks (e.g., logging out
to deter others from using your account, cyberbullying, privacy of personal information,
and ownership).

Impacts of
Computing

Fostering an Inclusive
Computing Culture

3–5 1B-N-7-20 Create examples of strong passwords, explain why strong passwords should be used,
and demonstrate proper use and protection of personal passwords.

Networks and the
Internet

Communicating about
Computing

3–5 1B-N-4-21 Model how a device on a network sends a message from one device (sender) to another
(receiver) while following specific rules.

Networks and the
Internet

Developing and Using
Abstractions IN

TERIM
 D

RAFT

INTERIM 2016 CSTA K–12 CS Standards
Level 2 (Grades 6–8)

The 2011 CSTA K–12 CS Standards were categorized into five conceptual strands (Computational Thinking, Collaboration, Computing Practice & Programming,
Computer & Communication Devices; and Community, Global & Ethical Impacts). The Interim 2016 CSTA K–12 CS Standards are categorized into five concepts
of the K–12 CS Framework, which is currently under development (Computing Systems, Networks and the Internet, Algorithms and Programming, Data and
Analysis, and Impacts of Computing). There is some overlap between strands and concepts, but they are not identical.

15 | I N T E R I M C S T A K ‐ 1 2 C S S t a n d a r d s : L e v e l 2
 J u l y 2 0 1 6

Grades Identifier Interim CSTA K–12 CS Standard
Framework

Concept
Framework

Practice

6–8 2-A-2-1
Solicit and integrate peer feedback as appropriate to develop or refine a program.

Algorithms and
Programming

Collaborating

6–8 2-A-7-2

Compare different algorithms that may be used to solve the same problem in terms of
their speed, clarity, and size (e.g., different algorithms solve the same problem, but one
might be faster than the other). [Clarification: Students are not expected to quantify
these differences.]

Algorithms and
Programming

Communicating
about Computing

6–8 2-A-7-3
Provide proper attribution when code is borrowed or built upon.

Algorithms and
Programming

Communicating
about Computing

6–8 2-A-7-4

Interpret the flow of execution of algorithms and predict their outcomes. [Clarification:
Algorithms can be expressed using natural language, flow and control diagrams,
comments within code, and pseudocode.]

Algorithms and
Programming

Communicating
about Computing

6–8 2-A-5-5
Design, develop, and present computational artifacts such as mobile applications that
address social problems both independently and collaboratively.

Algorithms and
Programming

Creating
Computational

Artifacts

6–8 2-A-5-6

Develop programs, both independently and collaboratively, that include sequences with
nested loops and multiple branches. [Clarification: At this level, students may use block-
based and/or text-based programming languages.]

Algorithms and
Programming

Creating
Computational

Artifacts

 IN

TERIM
 D

RAFT

INTERIM 2016 CSTA K–12 CS Standards
Level 2 (Grades 6–8)

The 2011 CSTA K–12 CS Standards were categorized into five conceptual strands (Computational Thinking, Collaboration, Computing Practice & Programming,
Computer & Communication Devices; and Community, Global & Ethical Impacts). The Interim 2016 CSTA K–12 CS Standards are categorized into five concepts
of the K–12 CS Framework, which is currently under development (Computing Systems, Networks and the Internet, Algorithms and Programming, Data and
Analysis, and Impacts of Computing). There is some overlap between strands and concepts, but they are not identical.

16 | I N T E R I M C S T A K ‐ 1 2 C S S t a n d a r d s : L e v e l 2
 J u l y 2 0 1 6

Grades Identifier Interim CSTA K–12 CS Standard
Framework

Concept
Framework

Practice

6–8 2-A-5-7 Create variables that represent different types of data and manipulate their values. Algorithms and
Programming

Creating
Computational

Artifacts

6–8 2-A-4-8

Define and use procedures that hide the complexity of a task and can be reused to solve
similar tasks. [Clarification: Students use and modify, but do not necessarily create,
procedures with parameters.]

Algorithms and
Programming

Developing and
Using Abstractions

6–8 2-A-3-9 Decompose a problem into parts and create solutions for each part. Algorithms and
Programming

Recognizing and
Defining

Computational
Problems

6–8 2-A-6-10
Use an iterative design process (e.g., define the problem, generate ideas, build, test,
and improve solutions) to solve problems, both independently and collaboratively.

Algorithms and
Programming

Testing and
Refining

6–8 2-C-7-11

Justify the hardware and software chosen to accomplish a task (e.g., comparison of the
features of a tablet vs. desktop, selecting which sensors and platform to use in building a
robot or developing a mobile app).

Computing
Systems

Communicating
about Computing

6–8 2-C-4-12

Analyze the relationship between a device's computational components and its
capabilities. [Clarification: Computing Systems include not only computers, but also cars,
microwaves, smartphones, traffic lights, and flash drives.]

Computing
Systems

Developing and
Using Abstractions

 IN

TERIM
 D

RAFT

INTERIM 2016 CSTA K–12 CS Standards
Level 2 (Grades 6–8)

The 2011 CSTA K–12 CS Standards were categorized into five conceptual strands (Computational Thinking, Collaboration, Computing Practice & Programming,
Computer & Communication Devices; and Community, Global & Ethical Impacts). The Interim 2016 CSTA K–12 CS Standards are categorized into five concepts
of the K–12 CS Framework, which is currently under development (Computing Systems, Networks and the Internet, Algorithms and Programming, Data and
Analysis, and Impacts of Computing). There is some overlap between strands and concepts, but they are not identical.

17 | I N T E R I M C S T A K ‐ 1 2 C S S t a n d a r d s : L e v e l 2
 J u l y 2 0 1 6

Grades Identifier Interim CSTA K–12 CS Standard
Framework

Concept
Framework

Practice

6–8 2-C-6-13

Use a systematic process to identify the source of a problem within individual and
connected devices (e.g., follow a troubleshooting flow diagram, make changes to
software to see if hardware will work, restart device, check connections, swap in working
components).

Computing
Systems

Testing and
Refining

6–8 2-D-7-14
Describe how different formats of stored data represent tradeoffs between quality and
size. [Clarification: compare examples of music, text and/or image formats.]

Data and Analysis
Communicating

about Computing

6–8 2-D-7-15

Explain the processes used to collect, transform, and analyze data to solve a problem
using computational tools (e.g., use an app or spreadsheet form to collect data, decide
which data to use or ignore, and choose a visualization method.).

Data and Analysis Communicating
about Computing

6–8 2-D-5-16
Revise computational models to more accurately reflect real-world systems (e.g.,
ecosystems, epidemics, spread of ideas). Data and Analysis

Creating
Computational

Artifacts

6–8 2-D-4-17
Represent data using different encoding schemes (e.g., binary, Unicode, Morse code,
shorthand, student-created codes). Data and Analysis Developing and

Using Abstractions

6–8 2-I-7-18

Summarize negative and positive impacts of using data and information to categorize
people, predict behavior, and make recommendations based on those predictions (e.g.,
customizing search results or targeted advertising, based on previous browsing history,
can save search time and limit options at the same time).

Impacts of
Computing

Communicating
about Computing

6–8 2-I-7-19
Explain how computer science fosters innovation and enhances nearly all careers and
disciplines.

Impacts of
Computing

Communicating
about Computing

IN
TERIM

 D
RAFT

INTERIM 2016 CSTA K–12 CS Standards
Level 2 (Grades 6–8)

The 2011 CSTA K–12 CS Standards were categorized into five conceptual strands (Computational Thinking, Collaboration, Computing Practice & Programming,
Computer & Communication Devices; and Community, Global & Ethical Impacts). The Interim 2016 CSTA K–12 CS Standards are categorized into five concepts
of the K–12 CS Framework, which is currently under development (Computing Systems, Networks and the Internet, Algorithms and Programming, Data and
Analysis, and Impacts of Computing). There is some overlap between strands and concepts, but they are not identical.

18 | I N T E R I M C S T A K ‐ 1 2 C S S t a n d a r d s : L e v e l 2
 J u l y 2 0 1 6

Grades Identifier Interim CSTA K–12 CS Standard
Framework

Concept
Framework

Practice

6–8 2-I-1-20
Provide examples of how computational artifacts and devices impact health and well-
being, both positively and negatively.

Impacts of
Computing

Fostering an
Inclusive

Computing Culture

6–8 2-I-1-21 Describe ways in which the Internet impacts global communication and collaborating. Impacts of
Computing

Fostering an
Inclusive

Computing Culture

6–8 2-I-1-22

Describe ethical issues that relate to computing devices and networks (e.g., equity of
access, security, hacking, intellectual property, copyright, Creative Commons licensing,
and plagiarism).

Impacts of
Computing

Fostering an
Inclusive

Computing Culture

6–8 2-I-6-23
Redesign a computational artifact to remove barriers to universal access (e.g., using
captions on images, high contrast colors, and/or larger font sizes).

Impacts of
Computing

Testing and
Refining

6–8 2-N-7-24
Summarize security risks associated with weak passwords, lack of encryption, insecure
transactions, and persistence of data.

Networks and the
Internet

Communicating
about Computing

6–8 2-N-4-25
Simulate how information is transmitted as packets through multiple devices over the
Internet and networks.

Networks and the
Internet

Developing and
Using Abstractions

IN
TERIM

 D
RAFT

INTERIM 2016 CSTA K–12 CS Standards
Level 3A (Grades 9–10)

The 2011 CSTA K–12 CS Standards were categorized into five conceptual strands (Computational Thinking, Collaboration, Computing Practice & Programming,
Computer & Communication Devices; and Community, Global & Ethical Impacts). The Interim 2016 CSTA K–12 CS Standards are categorized into five concepts
of the K–12 CS Framework, which is currently under development (Computing Systems, Networks and the Internet, Algorithms and Programming, Data and
Analysis, and Impacts of Computing). There is some overlap between strands and concepts, but they are not identical.

19 | I N T E R I M C S T A K ‐ 1 2 C S S t a n d a r d s : L e v e l 3 A
 J u l y 2 0 1 6

Grades Identifier Interim CSTA K–12 CS Standard
Framework

Concept
Framework

Practice

9–10 3A-A-2-1
Design and develop a software artifact working in a team.

Algorithms and
Programming

Collaborating

9–10 3A-A-2-2

Demonstrate how diverse collaborating impacts the design and development of software
products (e.g., discussing real-world examples of products that have been improved
through having a diverse design team or reflecting on their own team's development
experience).

Algorithms and
Programming

Collaborating

9–10 3A-A-7-3
Compare and contrast various software licensing schemes (e.g., open source, freeware,
commercial).

Algorithms and
Programming

Communicating
about Computing

9–10 3A-A-5-4

Design, develop, and implement a computing artifact that responds to an event (e.g., robot
that responds to a sensor, mobile app that responds to a text message, sprite that responds
to a broadcast).

Algorithms and
Programming

Creating
Computational

Artifacts

9–10 3A-A-5-5
Use user-centered research and design techniques (e.g., surveys, interviews) to create
software solutions.

Algorithms and
Programming

Creating
Computational

Artifacts

9–10 3A-A-5-6
Integrate grade-level appropriate mathematical techniques, concepts, and processes in the
creation of computing artifacts.

Algorithms and
Programming

Creating
Computational

Artifacts

 IN
TERIM

 D
RAFT

INTERIM 2016 CSTA K–12 CS Standards
Level 3A (Grades 9–10)

The 2011 CSTA K–12 CS Standards were categorized into five conceptual strands (Computational Thinking, Collaboration, Computing Practice & Programming,
Computer & Communication Devices; and Community, Global & Ethical Impacts). The Interim 2016 CSTA K–12 CS Standards are categorized into five concepts
of the K–12 CS Framework, which is currently under development (Computing Systems, Networks and the Internet, Algorithms and Programming, Data and
Analysis, and Impacts of Computing). There is some overlap between strands and concepts, but they are not identical.

20 | I N T E R I M C S T A K ‐ 1 2 C S S t a n d a r d s : L e v e l 3 A
 J u l y 2 0 1 6

Grades Identifier Interim CSTA K–12 CS Standard
Framework

Concept
Framework

Practice

9–10 3A-A-4-7
Understand the notion of hierarchy and abstraction in high-level languages, translation,
instruction sets, and logic circuits.

Algorithms and
Programming

Developing and
Using

Abstractions

9–10 3A-A-4-8
Deconstruct a complex problem into simpler parts using predefined constructs (e.g.,
functions and parameters and/or classes).

Algorithms and
Programming

Developing and
Using

Abstractions

9–10 3A-A-4-9
Demonstrate the value of abstraction for managing problem complexity (e.g., using a list
instead of discrete variables).

Algorithms and
Programming

Developing and
Using

Abstractions

9–10 3A-A-3-10
Design algorithms using sequence, selection, and iteration.

Algorithms and
Programming

Recognizing and
Defining

Computational
Problems

9–10 3A-A-3-11
Explain and demonstrate how modeling and simulation can be used to explore natural
phenomena (e.g., flocking behaviors, queueing, life cycles).

Algorithms and
Programming

Recognizing and
Defining

Computational
Problems

9–10 3A-A-6-12
Use a systematic approach and debugging tools to independently debug a program (e.g.,
setting breakpoints, inspecting variables with a debugger).

Algorithms and
Programming

Testing and
Refining IN

TERIM
 D

RAFT

INTERIM 2016 CSTA K–12 CS Standards
Level 3A (Grades 9–10)

The 2011 CSTA K–12 CS Standards were categorized into five conceptual strands (Computational Thinking, Collaboration, Computing Practice & Programming,
Computer & Communication Devices; and Community, Global & Ethical Impacts). The Interim 2016 CSTA K–12 CS Standards are categorized into five concepts
of the K–12 CS Framework, which is currently under development (Computing Systems, Networks and the Internet, Algorithms and Programming, Data and
Analysis, and Impacts of Computing). There is some overlap between strands and concepts, but they are not identical.

21 | I N T E R I M C S T A K ‐ 1 2 C S S t a n d a r d s : L e v e l 3 A
 J u l y 2 0 1 6

Grades Identifier Interim CSTA K–12 CS Standard
Framework

Concept
Framework

Practice

9–10 3A-C-7-13

Develop and apply criteria (e.g., power consumption, processing speed, storage space,
battery life, cost, operating system) for evaluating a computer system for a given purpose
(e.g., system specification needed to run a game, web browsing, graphic design or video
editing).

Computing
Systems

Communicating
About Computing

9–10 3A-C-5-14

Create, extend, or modify existing programs to add new features and behaviors using
different forms of inputs and outputs (e.g., inputs such as sensors, mouse clicks, data sets;
outputs such as text, graphics, sounds).

Computing
Systems

Creating
Computational

Artifacts

9–10 3A-C-4-15

Demonstrate the role and interaction of a computer embedded within a physical system,
such as a consumer electronic, biological system, or vehicle, by creating a diagram,
model, simulation, or prototype.

Computing
Systems

Developing and
Using Abstractions

9–10 3A-C-4-16

Describe the steps necessary for a computer to execute high-level source code (e.g.,
compilation to machine language, interpretation, fetch-decode-execute cycle).

[https://www.cise.ufl.edu/~mssz/CompOrg/CDAintro.html]

Computing
Systems

Developing and
Using Abstractions

9–10 3A-D-5-17 Create computational models that simulate real-world systems (e.g., ecosystems,
epidemics, spread of ideas).

Data and
Analysis

Creating
Computational

Artifacts

9–10 3A-D-4-18 Convert between binary, decimal, and hexadecimal representations of data (e.g., convert
hexadecimal color codes to decimal percentages, ASCII/Unicode representation).

Data and
Analysis

Developing and
Using Abstractions IN

TERIM
 D

RAFT

INTERIM 2016 CSTA K–12 CS Standards
Level 3A (Grades 9–10)

The 2011 CSTA K–12 CS Standards were categorized into five conceptual strands (Computational Thinking, Collaboration, Computing Practice & Programming,
Computer & Communication Devices; and Community, Global & Ethical Impacts). The Interim 2016 CSTA K–12 CS Standards are categorized into five concepts
of the K–12 CS Framework, which is currently under development (Computing Systems, Networks and the Internet, Algorithms and Programming, Data and
Analysis, and Impacts of Computing). There is some overlap between strands and concepts, but they are not identical.

22 | I N T E R I M C S T A K ‐ 1 2 C S S t a n d a r d s : L e v e l 3 A
 J u l y 2 0 1 6

Grades Identifier Interim CSTA K–12 CS Standard
Framework

Concept
Framework

Practice

9–10 3A-D-4-19

Analyze the representation tradeoffs among various forms of digital information (e.g.,
lossy versus lossless compression, encrypted vs. unencrypted, various image
representations).

Data and Analysis
Developing and

Using
Abstractions

9–10 3A-D-3-20
Discuss techniques used to store, process, and retrieve different amounts of information
(e.g., files, databases, data warehouses).

Data and Analysis

Recognizing and
Defining

Computational
Problems

9–10 3A-D-3-21
Apply basic techniques for locating and collecting small- and large-scale data sets (e.g.,
creating and distributing user surveys, accessing real-world data sets).

Data and Analysis

Recognizing and
Defining

Computational
Problems

9–10 3A-I-2-22

Debate the social and economic implications associated with ethical and unethical
computing practices (e.g., intellectual property rights, hacktivism, software piracy, diesel
emissions testing scandal, new computers shipped with malware).

Impacts of
Computing

Collaborating

9–10 3A-I-7-23 Compare and contrast information access and distribution rights. Impacts of
Computing

Communicating
about Computing

9–10 3A-I-7-24

Discuss implications of the collection and large-scale analysis of information about
individuals (e.g., how businesses, social media, and government collect and use personal
data).

Impacts of
Computing

Communicating
about Computing IN

TERIM
 D

RAFT

INTERIM 2016 CSTA K–12 CS Standards
Level 3A (Grades 9–10)

The 2011 CSTA K–12 CS Standards were categorized into five conceptual strands (Computational Thinking, Collaboration, Computing Practice & Programming,
Computer & Communication Devices; and Community, Global & Ethical Impacts). The Interim 2016 CSTA K–12 CS Standards are categorized into five concepts
of the K–12 CS Framework, which is currently under development (Computing Systems, Networks and the Internet, Algorithms and Programming, Data and
Analysis, and Impacts of Computing). There is some overlap between strands and concepts, but they are not identical.

23 | I N T E R I M C S T A K ‐ 1 2 C S S t a n d a r d s : L e v e l 3 A
 J u l y 2 0 1 6

Grades Identifier Interim CSTA K–12 CS Standard
Framework

Concept
Framework

Practice

9–10 3A-I-7-25
Describe how computation shares features with art and music by translating human
intention into an artifact.

Impacts of
Computing

Communicating
about Computing

9–10 3A-I-1-26

Compare and debate the positive and negative impacts of computing on behavior and
culture (e.g., evolution from hitchhiking to ridesharing apps, online accommodation rental
services).

Impacts of
Computing

Fostering an
Inclusive

Computing Culture

9–10 3A-I-1-27
Demonstrate how computing enables new forms of experience, expression,
communication, and collaborating.

Impacts of
Computing

Fostering an
Inclusive

Computing Culture

9–10 3A-I-1-28
Explain the impact of the digital divide (i.e., uneven access to computing, computing
education, and interfaces) on access to critical information.

Impacts of
Computing

Fostering an
Inclusive

Computing Culture

9–10 3A-I-6-29
Redesign user interfaces (e.g., webpages, mobile applications, animations) to be more
inclusive, accessible, and minimizing the impact of the designer's inherent bias.

Impacts of
Computing

Testing and
Refining

9–10 3A-N-7-30
Describe key protocols and underlying processes of Internet-based services (e.g.,
http/https and SMTP/IMAP, routing protocols).

Networks and the
Internet

Communicating
about Computing

9–10 3A-N-4-31

Illustrate the basic components of computer networks (e.g., draw logical and topological
diagrams of networks including routers, switches, servers, and end user devices; create
model with string and paper).

Networks and the
Internet

Developing and
Using Abstractions

IN
TERIM

 D
RAFT

INTERIM 2016 CSTA K–12 CS Standards
Level 3A (Grades 9–10)

The 2011 CSTA K–12 CS Standards were categorized into five conceptual strands (Computational Thinking, Collaboration, Computing Practice & Programming,
Computer & Communication Devices; and Community, Global & Ethical Impacts). The Interim 2016 CSTA K–12 CS Standards are categorized into five concepts
of the K–12 CS Framework, which is currently under development (Computing Systems, Networks and the Internet, Algorithms and Programming, Data and
Analysis, and Impacts of Computing). There is some overlap between strands and concepts, but they are not identical.

24 | I N T E R I M C S T A K ‐ 1 2 C S S t a n d a r d s : L e v e l 3 A
 J u l y 2 0 1 6

Grades Identifier Interim CSTA K–12 CS Standard
Framework

Concept
Framework

Practice

9–10 3A-N-1-32
Compare and contrast multiple viewpoints on cybersecurity (e.g., from the perspective of
security experts, privacy advocates, the government).

Networks and the
Internet

Fostering an
Inclusive

Computing Culture

9–10 3A-N-3-33
Explain the principles of information security (confidentiality, integrity, availability) and
authentication techniques.

Networks and the
Internet

Recognizing and
Defining

Computational
Problems

9–10 3A-N-3-34
Use simple encryption and decryption algorithms to transmit/receive an encrypted
message.

Networks and the
Internet

Recognizing and
Defining

Computational
Problems

9–10 3A-N-6-35
Identify digital and physical strategies to secure networks and discuss the tradeoffs
between ease of access and need for security.

Networks and the
Internet

Testing and
Refining

IN
TERIM

 D
RAFT

INTERIM 2016 CSTA K–12 CS Standards
Level 3B (Grades 11–12)

The 2011 CSTA K–12 CS Standards were categorized into five conceptual strands (Computational Thinking, Collaboration, Computing Practice & Programming,
Computer & Communication Devices; and Community, Global & Ethical Impacts). The Interim 2016 CSTA K–12 CS Standards are categorized into five concepts
of the K–12 CS Framework, which is currently under development (Computing Systems, Networks and the Internet, Algorithms and Programming, Data and
Analysis, and Impacts of Computing). There is some overlap between strands and concepts, but they are not identical.

25 | I N T E R I M C S T A K ‐ 1 2 C S S t a n d a r d s : L e v e l 3 B
 J u l y 2 0 1 6

Grades Identifier Interim CSTA K–12 CS Standard
Framework

Concept
Framework

Practice

11–12 3B-A-2-1
Use version control systems, integrated development environments (IDEs), and
collaborating tools and practices (code documentation) in a group software project.

Algorithms and
Programming

Collaborating

11–12 3B-A-2-2
Demonstrate software life cycle processes (e.g., spiral, waterfall) by participating on
software project teams (e.g., community service project with real-world clients).

Algorithms and
Programming

Collaborating

11–12 3B-A-7-3
Modify an existing program to add additional functionality and discuss intended and
unintended implications (e.g., breaking other functionality).

Algorithms and
Programming

Communicating
about Computing

11–12 3B-A-7-4
Explain security issues that might lead to compromised computer programs (e.g., circular
references, ambiguous program calls, lack of error checking and field size checking).

Algorithms and
Programming

Communicating
about Computing

11–12 3B-A-7-5

Compare a variety of programming languages and identify features that make them useful
for solving different types of problems and developing different kinds of systems (e.g.,
declarative, logic, parallel, functional, compiled, interpreted, real-time).

Algorithms and
Programming

Communicating
about Computing

11–12 3B-A-7-6
Describe how artificial intelligence drives many software and physical systems (e.g.,
autonomous robots, computer vision, pattern recognition, text analysis).

Algorithms and
Programming

Communicating
about Computing

11–12 3B-A-5-7 Decompose a problem by creating new data types, functions, or classes. Algorithms and
Programming

Creating
Computational

Artifacts

11–12 3B-A-5-8
Demonstrate code reuse by creating programming solutions using libraries and APIs (e.g.,
graphics libraries, maps API).

Algorithms and
Programming

Creating
Computational

Artifacts

 IN
TERIM

 D
RAFT

INTERIM 2016 CSTA K–12 CS Standards
Level 3B (Grades 11–12)

The 2011 CSTA K–12 CS Standards were categorized into five conceptual strands (Computational Thinking, Collaboration, Computing Practice & Programming,
Computer & Communication Devices; and Community, Global & Ethical Impacts). The Interim 2016 CSTA K–12 CS Standards are categorized into five concepts
of the K–12 CS Framework, which is currently under development (Computing Systems, Networks and the Internet, Algorithms and Programming, Data and
Analysis, and Impacts of Computing). There is some overlap between strands and concepts, but they are not identical.

26 | I N T E R I M C S T A K ‐ 1 2 C S S t a n d a r d s : L e v e l 3 B
 J u l y 2 0 1 6

Grades Identifier Interim CSTA K–12 CS Standard
Framework

Concept
Framework

Practice

11–12 3B-A-5-9 Implement an AI algorithm to play a game against a human opponent or solve a problem.
Algorithms and
Programming

Creating
Computational

Artifacts

11–12 3B-A-5-10 Develop programs for multiple computing platforms (e.g., computer desktop, web, mobile).
Algorithms and
Programming

Creating
Computational

Artifacts

11–12 3B-A-4-11
Critically analyze classic algorithms (e.g., sorting, searching) and use in different contexts,
adapting as appropriate.

Algorithms and
Programming

Developing and
Using Abstractions

11–12 3B-A-4-12
Evaluate algorithms (e.g., sorting, searching) in terms of their efficiency, correctness, and
clarity.

Algorithms and
Programming

Developing and
Using Abstractions

11–12 3B-A-4-13
Compare and contrast fundamental data structures and their uses (e.g., lists, maps, arrays,
stacks, queues, trees, graphs).

Algorithms and
Programming

Developing and
Using Abstractions

11–12 3B-A-4-14

Discuss issues that arise when breaking large-scale problems down into parts that must be
processed simultaneously on separate systems (e.g., cloud computing, parallelization,
concurrency).

Algorithms and
Programming

Developing and
Using Abstractions

11–12 3B-A-3-15 Provide examples of computationally solvable problems and difficult-to-solve problems. Algorithms and
Programming

Recognizing and
Defining

Computational
Problems

 IN
TERIM

 D
RAFT

INTERIM 2016 CSTA K–12 CS Standards
Level 3B (Grades 11–12)

The 2011 CSTA K–12 CS Standards were categorized into five conceptual strands (Computational Thinking, Collaboration, Computing Practice & Programming,
Computer & Communication Devices; and Community, Global & Ethical Impacts). The Interim 2016 CSTA K–12 CS Standards are categorized into five concepts
of the K–12 CS Framework, which is currently under development (Computing Systems, Networks and the Internet, Algorithms and Programming, Data and
Analysis, and Impacts of Computing). There is some overlap between strands and concepts, but they are not identical.

27 | I N T E R I M C S T A K ‐ 1 2 C S S t a n d a r d s : L e v e l 3 B
 J u l y 2 0 1 6

Grades Identifier Interim CSTA K–12 CS Standard
Framework

Concept
Framework

Practice

11–12 3B-A-3-16
Explain the value of heuristic algorithms (discovery methods) to approximating solutions for
difficult-to-solve computational problems.

Algorithms and
Programming

Recognizing and
Defining

Computational
Problems

11–12 3B-A-3-17
Decompose a large-scale computational problem by identifying generalizable patterns and
applying them in a solution.

Algorithms and
Programming

Recognizing and
Defining

Computational
Problems

11–12 3B-A-3-18 Illustrate the flow of execution of a recursive algorithm.
Algorithms and
Programming

Recognizing and
Defining

Computational
Problems

11–12 3B-A-3-19
Describe how parallel processing can be used to solve large problems (e.g., SETI at Home,
FoldIt).

Algorithms and
Programming

Recognizing and
Defining

Computational
Problems

11–12 3B-A-3-20
Develop and use a series of test cases to verify that a program performs according to its
design specifications.

Algorithms and
Programming

Recognizing and
Defining

Computational
Problems

11–12 3B-A-6-21
Evaluate key qualities of a program (e.g., correctness, usability, readability, efficiency,
portability, scalability) through a process such as a code review.

Algorithms and
Programming

Testing & Iterative
Refinement

IN
TERIM

 D
RAFT

INTERIM 2016 CSTA K–12 CS Standards
Level 3B (Grades 11–12)

The 2011 CSTA K–12 CS Standards were categorized into five conceptual strands (Computational Thinking, Collaboration, Computing Practice & Programming,
Computer & Communication Devices; and Community, Global & Ethical Impacts). The Interim 2016 CSTA K–12 CS Standards are categorized into five concepts
of the K–12 CS Framework, which is currently under development (Computing Systems, Networks and the Internet, Algorithms and Programming, Data and
Analysis, and Impacts of Computing). There is some overlap between strands and concepts, but they are not identical.

28 | I N T E R I M C S T A K ‐ 1 2 C S S t a n d a r d s : L e v e l 3 B
 J u l y 2 0 1 6

Grades Identifier Interim CSTA K–12 CS Standard
Framework

Concept
Framework

Practice

11–12 3B-C-7-22
Explain the role of operating systems (e.g., how programs are stored in memory, how data
is organized/retrieved, how processes are managed and multi-tasked).

Computing
Systems

Communicating
about Computing

11–12 3B-C-7-23
Identify the functionality of various categories of hardware components and communication
between them (e.g., physical layers, logic gates, chips, input and output devices).

Computing
Systems

Communicating
about Computing

11–12 3B-D-4-24
Use data analysis to identify significant patterns in complex systems (e.g., take existing data
sets and make sense of them).

Data and
Analysis

Developing and
Using Abstractions

11–12 3B-D-4-25
Discuss how data sequences (e.g., binary, hexadecimal, octal) can be interpreted in a
variety of forms (e.g., instructions, numbers, text, sound, image).

Data and
Analysis

Developing and
Using Abstractions

11–12 3B-D-4-26 Evaluate the ability of models and simulations to formulate, refine, and test hypotheses. Data and
Analysis

Developing and
Using Abstractions

11–12 3B-D-4-27
Identify mathematical and computational patterns through modeling and simulation (e.g.,
regression, Runge-Kutta, queueing theory, discrete event simulation).

Data and
Analysis

Developing and
Using Abstractions

11–12 3B-D-1-28
Use various data collection techniques for different types of problems (e.g., mobile device
GPS, user surveys, embedded system sensors, open data sets, social media data sets).

Data and
Analysis

Fostering an
Inclusive

Computing Culture

11–12 3B-D-3-29
Explore security policies by implementing and comparing encryption and authentication
strategies (e.g., secure coding, safeguarding keys).

Data and
Analysis

Recognizing and
Defining

Computational
Problems

 IN
TERIM

 D
RAFT

INTERIM 2016 CSTA K–12 CS Standards
Level 3B (Grades 11–12)

The 2011 CSTA K–12 CS Standards were categorized into five conceptual strands (Computational Thinking, Collaboration, Computing Practice & Programming,
Computer & Communication Devices; and Community, Global & Ethical Impacts). The Interim 2016 CSTA K–12 CS Standards are categorized into five concepts
of the K–12 CS Framework, which is currently under development (Computing Systems, Networks and the Internet, Algorithms and Programming, Data and
Analysis, and Impacts of Computing). There is some overlap between strands and concepts, but they are not identical.

29 | I N T E R I M C S T A K ‐ 1 2 C S S t a n d a r d s : L e v e l 3 B
 J u l y 2 0 1 6

Grades Identifier Interim CSTA K–12 CS Standard Framework Concept
Framework

Practice

11–12 3B-I-7-30
Develop criteria to evaluate the beneficial and harmful effects of computing
innovations on people and society.

Impacts of Computing
Communicating

about Computing

11–12 3B-I-5-31

Select, observe, and contribute to global collaboration in the development of a
computational artifact (e.g., contribute the resolution of a bug in an open-source
project hosted on GitHub).

Impacts of Computing
Creating

Computational
Artifacts

11–12 3B-I-1-32

Design and implement a study that evaluates or predicts how computation has
revolutionized an aspect of our culture and how it might evolve (e.g., education,
healthcare, art/entertainment, energy).

Impacts of Computing
Fostering an

Inclusive
Computing Culture

11–12 3B-I-1-33 Debate laws and regulations that impact the development and use of software. Impacts of Computing
Fostering an

Inclusive
Computing Culture

11–12 3B-I-1-34
Evaluate the impact of equity, access, and influence on the distribution of
computing resources in a global society. Impacts of Computing

Fostering an
Inclusive

Computing Culture

11–12 3B-N-4-35
Simulate and discuss the issues (e.g., bandwidth, load, delay, topology) that
impact network functionality (e.g., use free network simulators). Networks and the Internet Developing and

Using Abstractions

IN
TERIM

 D
RAFT

30

IN
TERIM

 D
RAFT

31

APPENDIX A: GLOSSARY OF TERMS

K–12 CS Framework Draft (6/7/2016) Glossary

The following draft glossary includes definitions of terms used in the statements in the
K–12 CS Framework (https://k12cs.org/). These terms are defined for readers of the
framework and are not necessarily intended to be the definitions or terms that are seen
by students. CSTA would like to extend a heartfelt thank you to the K-12 CS Framework
for allowing us to include this glossary as part of our supplemental materials.

Term Definition

abstraction (process): The process of reducing complexity by focusing on the main idea. By hiding details
irrelevant to the question at hand and bringing together related and useful details, abstraction
reduces complexity and allows one to focus on the problem. In elementary classrooms,
abstraction is hiding unnecessary details to make it easier to think about a problem.
(product): A new representation of a thing, a system, or a problem that helpfully reframes a
problem by hiding details irrelevant to the question at hand. [MA-DLCS]

algorithm A step-by-step process to complete a task.

app A type of application software designed to run on a mobile device, such as a smartphone or
tablet computer (also known as a mobile application). [Techopedia]

application
programming
interface (API)

A software program that facilitates interaction with other software programs. It allows a
programmer to interact with an application using a collection of callable functions, and to write
programs that will not cease to function if the underlying system is upgraded. [Techopedia]

artifact Anything created by a human. See “computational artifact” for the computer science-specific
definition.

audience Expected end users of a computing artifact or system.

automate;
automation

automate: To link disparate systems and software in such a way that they become self-acting
or self-regulating.
automation: The process of automating.

backup The process of making copies of data or data files to use in the event the original data or
data files are lost or destroyed. [Techopedia]

binary A method of encoding data using two symbols (usually 1 and 0). To illustrate binary encoding,
we can use any two symbols. [MA-DLCS]

Bluetooth Wireless technology that enables communication between Bluetooth-compatible devices. For
example, it is used for short-range connections between desktop and laptop computers, digital
cameras, scanners, cellular phones, and printers.

bug An error in a software program. It may cause a program to unexpectedly quit or behave in an
unintended manner. [TechTerms]
The process of removing errors (bugs) is called debugging.

civic virtues Principles and traits of character that enable citizens to contribute to the common good by
engaging in political and civil society.
Reference: C3 Framework for Social Studies.

cloud Remote servers that store data and are accessed from the Internet. [Techopedia]

code Any set of instructions expressed in a programming language. [MA-DLCS]

IN
TERIM

 D
RAFT

32

Term Definition

command A specific action assigned to a program to perform a specific task. [Techopedia]

compatibility;
compatible

The capacity for two systems to work together without having to be altered to do so.
Compatibility can refer to interoperability between any two products: hardware and/or
software, products of the same or different types, or different versions of the same product.
[TechTarget]

complexity The intrinsic minimum amount of resources, for instance, memory, time, messages, etc.,
needed to solve a problem or execute an algorithm. [NIST/DADS]

component An element of a larger group. Usually, a component provides a particular function or group of
related functions. [TechTerms, TechTarget]

computational Relating to computers or computing methods.

computational
artifact

An invention, creation, final product, or development by-product, created by the act or process
of computing. Often, this term refers to a program. [MA-DLCS, CSP, University of Rhode
Island]

computational
thinking

The thought processes involved in formulating problems and their solutions so that the
solutions are represented in a form that can be effectively carried out by an information-
processing agent (for example, a computer) [Cuny, Snyder, & Wing, 2010]

computer A machine or device that performs processes, calculations and operations based on
instructions provided by a software or hardware program. [Techopedia]

computer
science

The study of computers and algorithmic processes, including their principles, design,
implementation, and impact on society. [MA-DLCS, CSTA]

computing Any goal-oriented activity requiring, benefiting from, or creating algorithmic processes. [MA-
DLCS]

computing
device

A physical device, although not necessarily in the form of a traditional computer, that performs
the functions of a computer. Like a computer, a computing device uses hardware and software
to receive, process, and output information. Computers, mobile phones, and computer chips
inside appliances are all examples of computing devices.

computing
system

A computing system consists of one or more computers or computing devices, together with
their hardware and software. Although a computing system can be limited to a single computer
or computing device, it more commonly refers to a collection of multiple connected computers,
computing devices, and hardware.

conditional;
conditional
statement

A feature of a programming language that performs different computations or actions
depending on whether a programmer-specified Boolean condition evaluates to true or false.
[MA-DLCS]

configuration (process): Defining the options that are provided when installing or modifying hardware and
software, or the process of creating the configuration (product). [TechTarget]
(product): The specific hardware and software details that tell exactly what the system is made
up of, especially in terms of devices attached, capacity or capability. [TechTarget]

connection A physical or wireless attachment between multiple computing systems, computers, or
computing devices.

connectivity A program or device's ability to link with other programs and devices. [Webopedia]

control;
control
structure

control: (in general) The power to direct the course of actions.
(in programming) The means of directing which actions take place, and the order in which they
take place, implemented through elements of programming code.
control structure: A programming structure that implements control.

IN
TERIM

 D
RAFT

33

Term Definition

cultural
practices

The manifestations of culture or sub-culture, especially in regard to the traditional and
customary practices of a particular ethnic or other cultural group.

data Information that is collected and used for reference or analysis. Data can be digital or non-
digital and can be in many forms, including numbers, text, show of hands, images, sounds, or
video. [CAS-Prim, TechTerms]

data structure A particular way to store and organize data within a computer program. [MA-DLCS]

data
transmission

The process of sending digital or analog data over a communication medium to one or more
computing, network, communication or electronic devices. [Techopedia]

data type An attribute that tells what kind of data a value or variable can have, as well as what types of
operations can be performed on it. [Techopedia, Wikipedia]

database An organized collection of data, an electronic system that allows data to be easily accessed,
manipulated and updated. [Techopedia]

debugging The process of finding and correcting errors (bugs) in programs. [MA-DLCS]

decomposition;
decomposed

decomposition: Breaking down a problem or system into its components. [MA-DLCS]
decomposed: Broken down into components.

device A unit of physical hardware or equipment that provides one or more computing functions within
a computer system. It can provide input to the computer, accept output, or both. [Techopedia]

digital A characteristic of electronic technology that uses discrete values, generally 0 and 1, to
generate, store, and process data. [Techopedia]

digital
citizenship

The norms of appropriate, responsible behavior with regard to the use of technology. [MA-
DLCS]

digital divide The gap between those who have access to digital technology and those who do not, which is
influenced by social, cultural and economic factors. [MA-DLCS]

efficiency A measure of the amount of resources an algorithm uses to find an answer. It is usually
expressed in terms of the theoretical computations, such as comparisons or data moves, the
memory used, the number of messages passed, the number of disk accesses, etc.
[NIST/DADS]

encryption The conversion of electronic data into another form, called cipher text, which cannot be easily
understood by anyone except authorized parties. [TechTarget]

end user (or
user)

A person for whom a hardware or software product is designed (as distinguished from the
developers, installers, and servicers of the product). [TechTarget]

event Any identifiable occurrence that has significance for system hardware or software. User-
generated events include keystrokes and mouse clicks; system-generated events include
program loading and errors. [TechTarget]

execute;
execution;
executable

execute: To carry out (or “run”) an instruction or instruction set (program, app, etc.)
execution: The process of executing an instruction or instruction set.
executable: A binary file containing a program in machine language which is ready to be
executed. [FOLDOC]

firewall A network security system with rules to control incoming and outgoing traffic. [MA-DLCS]

function A type of procedure or routine. Some programming languages make a distinction between a
function, which returns a value, and a procedure, which performs some operation, but does
not return a value. [MA-DLCS]
Note: This definition differs from that used in math.

IN
TERIM

 D
RAFT

34

Term Definition

functional
programming

A programming paradigm—a style of building the structure and elements of computer
programs—that treats computation as the evaluation of mathematical functions and avoids
changing-state and mutable data. [Wikipedia]
Functional programming languages rely heavily on recursion, using it where a procedural
language would use looping. [FOLDOC]

GPS Abbreviation for "Global Positioning System." GPS is a satellite navigation system used to
determine the ground position of an object. [TechTerms]

hacking Appropriately applying ingenuity (from “The Meaning of Hack”), cleverly solving a
programming problem (the New Hacker’s Dictionary), and using a computer to gain
unauthorized access to data within a system. [MA-DLCS]

hardware The physical components that make up a computing system, computer, or computing device.
[MA-DLCS]

hierarchy An organizational structure in which items are ranked according to levels of importance.
[TechTarget]

human-
computer
interaction (HCI)

The study of how people interact with computers and to what extent computing systems are or
are not developed for successful interaction with human beings. [TechTarget]

identifier The user-defined, unique name of a program element (such as a variable or procedure) in
code. An identifier name should indicate the meaning and usage of the element being referred.
[Techopedia]

input The signals or instructions sent to a computer. [Techopedia]

Internet The global collection of computer networks and their connections, all using shared protocols to
communicate [CAS-Prim]

iterative Involving the repeating of a process with the aim of approaching a desired goal, target, or
result. [MA-DLCS]

logic (Boolean) Boolean logic deals with the basic operations of truth values: AND, OR, NOT and
combinations thereof. [FOLDOC]

loop;
looping

loop: A programming structure that repeats a sequence of instructions as long as a specific
condition is true. [TechTerms]
looping: Repetition, using a loop.

memory Temporary storage used by computing devices. [MA-DLCS]

model A representation of (some part of) a problem or a system.
(Modeling (v): the act of creating a model) [MA-DLCS]
Note: This definition differs from that used in science.

modularity The characteristic of a software/web application that has been divided (decomposed) into
smaller modules. An application might have several procedures that are called from inside its
main procedure. Existing procedures could be reused by being recombined in a new
application.

network A group of computing devices (personal computers, phones, servers, switches, routers, and so
on) connected by cables or wireless media for the exchange of information and resources.

operating
system

Software that communicates with the hardware and allows other programs to run. An
operating system (or “OS”) is comprised of system software, or the fundamental files a
computer needs to boot up and function. Every desktop computer, tablet, and smartphone
includes an operating system that provides basic functionality for the device. [TechTerms]

operation An action, resulting from a single instruction, that changes the state of data. [Dictionary.com]

IN
TERIM

 D
RAFT

35

Term Definition

pair
programming

A technique in which two developers (or students) team together and work on one computer.
[TechTarget] The terms “driver” and “navigator” are often used for the two roles. In a
classroom setting, teachers often specify that students switch roles frequently (or within a
specific period of time).

paradigm
(programming)

A theory or a group of ideas about how something should be done, made, or thought about. A
philosophical or theoretical framework of any kind. [Merriam-Webster]
Common programming paradigms are object-oriented, functional, imperative, declarative,
procedural, logic, and symbolic. [DC, Wikipedia]

parameter A special kind of variable used in a procedure to refer to one of the pieces of data provided as
input to the procedure. These pieces of data are called arguments. An ordered list of
parameters is usually included in the definition of a subroutine so each time the subroutine is
called, its arguments for that call can be assigned to the corresponding parameters. [MA-
DLCS]

piracy The illegal copying, distribution, or use of software. [TechTarget]

procedure An independent code module that fulfills some concrete task and is referenced within a larger
body of source code. This kind of code item can also be called a function or a subroutine. The
fundamental role of a procedure is to offer a single point of reference for some small goal or
task that the developer or programmer can trigger by invoking the procedure itself. A
procedure may also be referred to as a function, subroutine, routine, method or subprogram.
[Techopedia]

processor The hardware within a computer or device that executes a program. The CPU (central
processing unit) is often referred to as the brain of a computer.

program;
programming

program (n): A set of instructions that the computer executes in order to achieve a particular
objective. [MA-DLCS]
program (v): To produce a program by programming.
programming: The craft of analyzing problems and designing, writing, testing, and
maintaining programs to solve them. [MA-DLCS]

protocol The special set of rules that end points in a telecommunication connection use when they
communicate. Protocols specify interactions between the communicating entities. [TechTarget]

prototype;
prototyping

prototype: An early approximation of a final product or information system, often built for
demonstration purposes. [TechTarget, Techopedia]
prototyping: The process of creating a prototype.

pseudocode A detailed yet readable description of what a computer program or algorithm must do,
expressed in a formally-styled natural language rather than in a programming language.
[TechTarget]

recursion;
recursive
function

recursion: An algorithmic technique in which a function, in order to accomplish a task, calls
itself with some part of the task. [NIST/DADS]
recursive function: A function, implemented in a programming language, that calls (invokes)
itself. [MA-DLCS, Techopedia]

redundancy A system design in which a component is duplicated so if it fails there will be a backup.
[TechTarget]

reliability An attribute of any system that consistently produces the same results, preferably meeting or
exceeding its specifications. [FOLDOC]

routing;
router

routing: Establishing the path that data packets traverse from source to destination.
router: A device or software that determines the routing for a data packet. [TechTarget]

IN
TERIM

 D
RAFT

36

Term Definition

security The protection against access to, or alteration of, computing resources, through the use of
technology, processes, and training. [TechTarget]

simulate;
simulation

simulate: to imitate the operation of a real world process or system over time.
simulation: Imitation of the operation of a real world process or system over time. [MA-DLCS]

software Programs that run on a computer system, computer, or other computing device.

storage (1) A place (usually a device) into which data can be entered, in which it can be held, and from
which it can be retrieved at a later time. [FOLDOC]
(2) A process through which digital data is saved within a data storage device by means of
computing technology. Storage is a mechanism that enables a computer to retain data, either
temporarily or permanently. [Techopedia]

string A sequence of letters, numbers, and/or other symbols. A string might represent a name,
address, or song title. Some functions commonly associated with strings are length,
concatenation, and substring. [TechTarget]

structure A general term used in the framework to discuss the concept of encapsulation without
specifying a particular paradigm.

subroutine A callable unit of code, a type of procedure.

switching;
switch

switching: The practice of directing a signal or data element toward a particular hardware
destination. [Techopedia]
switch: A high-speed device that receives incoming data packets and redirects them to their
destination on a local area network (LAN). [Techopedia]

syncing Merging data from multiple computing systems, computers, or computing devices.

syntax The grammar, structure, or order of the elements in a programming language statement.
[TechTarget]

system;
systems
thinking

system: A collection of elements or components that work together for a common purpose.
[TechTarget]
(computing) system: A collection of computing hardware and software integrated for the
purpose of accomplishing shared tasks.
systems thinking: A holistic approach to analysis that focuses on the way that a system's
constituent parts interrelate and how systems work over time and within the context of larger
systems. [TechTarget]

The physical and logical configuration of a network; the arrangement
of a network, including its nodes and connecting links. A logical topology is how devices
appear connected to the user. A physical topology is how they are actually interconnected with
wires and cables. [PC Magazine]

topology The physical and logical configuration of a network; the arrangement
of a network, including its nodes and connecting links. A logical topology is how devices
appear connected to the user. A physical topology is how they are actually interconnected with
wires and cables. [PC Magazine]

troubleshooting A systematic approach to problem solving that is often used to find and resolve a problem,
error, or fault within software or a computer system. [Techopedia, TechTarget]

USB Abbreviation for "Universal Serial Bus." USB is the most common type of computer port used
in today's computers. It can be used to connect keyboards, mice, game controllers, printers,
scanners, digital cameras, and removable media drives, just to name a few. [TechTalk]

user See the definition for “end user.”

variable A symbolic name that is used to keep track of a value that can change while a program is
running. Variables are not just used for numbers. They can also hold text, including whole

IN
TERIM

 D
RAFT

37

sentences (“strings”), or the logical values “true” or “false.” A variable has a data type and is
associated with a data storage location; its value is normally changed during the course of
program execution. [CAS-Prim, Techopedia]
Note: This definition differs from that used in math.

Draft Version 06/07/2016

Key to sources of multiple definitions in this glossary:

CAS-Prim Computing At School. Computing in the national curriculum: A guide for primary
teachers
(http://www.computingatschool.org.uk/data/uploads/CASPrimaryComputing.pdf)

CSTA CSTA K-12 Computer Science Standards (2011)
https://csta.acm.org/Curriculum/sub/K12Standards.html

FOLDOC Free On-Line Dictionary of Computing. (http://foldoc.org/)

MA-DLCS Massachusetts Digital Literacy and Computer Science (DL&CS) Standards, Glossary
(Draft, December 2015)

NIST/DADS National Institute of Science and Technology Dictionary of Algorithms and Data
Structures. (https://xlinux.nist.gov/dads//)

Techopedia Techopedia. (https://www.techopedia.com/dictionary)

TechTarget TechTarget Network. (http://www.techtarget.com/network)

TechTerms Tech Terms Computer Dictionary. (http://www.techterms.com)

Some definitions came directly from these sources, while others were excerpted or adapted to include
content relevant to this framework.

A few notes regarding this glossary:

 The first source was the draft Massachusetts glossary for their digital literacy and computer science
standards.

 We did not define any words in which the definition is the same in common English.
 We only define terms that are used in the framework (the statements themselves, the subconcept

headings, the core concept headings, core practice headings, the descriptive material/elaboration).
After each draft of the framework, we check that there are no terms in the glossary that are no longer
used in the framework.

 You'll notice many of the definitions include a source. The sources are all described at the bottom of
the doc. Most of the definitions are rephrased from the source, but some are taken almost word-for-
word. Others are combinations of pieces of definitions from multiple sources. And some of the
definitions are simply from the heads of the writers.

 IN
TERIM

 D
RAFT

38

IN
TERIM

 D
RAFT

39

APPENDIX B: LEGEND FOR IDENTIFIERS

Unique Numbering System for the 2016 CSTA K–12 CS Standards

To help organize and track each individual standard, we have developed a unique
identifier for each standard. An example appears below:

Grades Identifier Interim CSTA K–12 CS Standard
Framework

Concept
Framework

Practice

9–10 3A-A-2-1
Design and develop a software artifact
working in a team.

Algorithms and
Programming

Collaborating

Use the following legend to interpret the unique identifier for each [Interim] K-12 CS
Standard:

The identifier code corresponds to:
Level – Concept – Practice – Identifier

Identifier
Code

Key

 1A Grades K–2

1B Grades 3–5

2 Grades 6–8

3A Grades 9–12

3B Grades 11–12
 I Impacts of Computing

A Algorithms and Programming

D Data and Analysis

N Networks and the Internet

C Computing Systems

 1 Fostering an Inclusive Computing Culture

2 Collaborating

3 Recognizing and Defining Computational Problems

4 Developing and Using Abstractions

5 Creating Computational Artifacts

6 Testing and Refining

7 Communicating about Computing

P
ra

ct
ic

es

L
ev

el
s

C
o

n
ce

p
ts

IN
TERIM

 D
RAFT

IN
TERIM

 D
RAFT

