Given \triangle ABC has vertices at A(5,0), B(2, -5), C(0,3) a. Find the vertices of the image of \triangle ABC under $r_{(90^{\circ},0)}$	
A'(,) B'(,) C'(;) b. Find the image of the point B under a $R_{y=x}$	
c. Find the coordinates of the image of \triangle ABC under the transfordefined by $T_{(-4,3)}$	10
A'(,) B'(,) C'(,)	-10 -8 -6 -4 -2 2 4 6 8 10
	-2 -4 -6 -8
	-10 L

Given $\triangle BAD$ with B(-4,3), A(1,5), and D(-1,-4) use the following transformation $(R_{y=-2} \circ R_{x-axis})$

B'(,)A'(,)D'(,)

B''(,)A''(,)D''(,)

Given ΔLAR L(-4,-2), A(-2,2), and R(3,0) $T_{(0,-2)} \circ R_{y=x}$ L'(,) A'(,) R'(,)

L''(,)A''(,)R''(,)


```
Given quadrilateral MATH with M(-4, -2), A(-1, 2),
T(2,3), and H(4, -4), (r_{(180,0} \circ R_{x=2}))
M'( , )A'( , )T'( , )
M"( , )A"( , )T"( , )
H"(___,__)
                                                         8
                                                         6
                                                         2
                                          -10 -8 -6 -4 -2
                                                                4 6 8 10
                                                         -4
                                                         -6
                                                        -8
-10
```

Describe and write a rule for a composite transformation that will map $\triangle ABC$ onto $\triangle A'B'C'$.

Find the coordiantes of the vertices for each image

- a. $R_{y=-x}(QRS7)$
- Q'____
- R'____
- S'_____
- T'_____

b.
$$r_{(270^\circ,O)}(\mathit{QRST})$$

Q'____

c.
$$T_{\langle -5,-8\rangle}(QRST)$$

Q'____

d. $(R_{y-axix} \circ T_{\langle 4,0\rangle})(QRST)$

Q'____

S'____

T'_____

S'____

T'

R'____

S'_____

T'_____

A reflection over $x = 5$ followed by a reflection over $x = -8$ result in a translation in the direction of
UP DOWN LEFT RIGHT a total distacne
A reflection over $x = 6$ followed by a reflection over $x = -4$ result in a translation in the direction of
UP DOWN LEFT RIGHT a total distacne of
If you wanted to translate a shape to the up 6 units, you could reflect over y = -1 and then y =
If you want to translate a shape right 18 units, you could reflect over x = -3 and then x =
If you want to translate a shape down 14 units, you could reflect over y= and then y = 4.

Suppose m is the line x = 4 and n is the line x = -1. Write the following composition as one translation $R_m \circ R_n$.

$$R_m \circ R_n = T_{\langle \ \ \rangle}$$

Find a translation that has the same effect as the composition of translations below.

$$T_{(6,-4)}(x,y)$$
 followed by $T_{(-3,5)}(x,y)$

The rule $T_{4,-5}$ is used for point (-3, 4). Where is the translated point in the coordinate system?

Identify any reflection or/and rotational symmetry. On either, draw the line(s) of symmetry and describe the angle(s) of rotation.

Give the coordinates of the image of the point (6, -3) under the given transformation.

Transformation	New Coordinates
$r_{(90^{\circ},O)}$	
$R_{y=axis}$	
$(R_{y=3}\circ R_{y=-2)}$	
What single rule would work as well?	
$(r_{(90^{\circ},0)} \circ r_{(180^{\circ},0)}$	
$T_{(-42)}$	
$(R_{y=3)}\circ T_{(3,-1)}$	