Example 3: The population of a town is decreasing at a rate of 1% per year. In 2000, there were 1300 people. Write an exponential decay function to model this situation. Then find the population in 2008.

Growth or Decay:
Starting value (a):
Rate (as a decimal):

Function:

Example 4: The cost of tuition at a college is \$12,000 and is increasing at a rate of 6% per year. Find the cost of tuition after 4 years.

Growth or Decay:
Starting value (a):
Rate (as a decimal):
Function:

Example 5: The value of a car is \$18,000 and is depreciating at a rate of 12% per year. How much will your car be worth after 10 years?

Growth or Decay: _____

Starting value (a): _____

Rate (as a decimal): _____

Function:

Example 6: A bungee jumper jumps from a bridge. The diagram shows the bungee jumper's height above the ground at the top of each bounce. What is the bungee jumper's height at the top of the 5th bounce?

Growth or Decay:
Starting Value:
Rate (as a decimal):

Function: