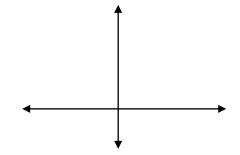

1. Sketch the following polynomials on the axis provided. Find all the zeros for each polynomial, indicate any multiplicities other than 1, and determine end behavior.


1)
$$f(x) = (x+1)(x-2)$$

1)
$$f(x) = (x+1)(x-2)$$
 2) $g(x) = -(x+3)(x+2)(x-1)$ 3) $h(x) = -x(x-2)(x+4)(x+1)$

3)
$$h(x) = -x(x-2)(x+4)(x+1)$$

Leading term _____

End Behavior:

Zeros: _____

mult:

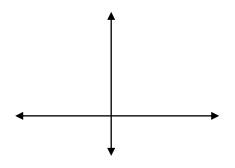
Leading term _____

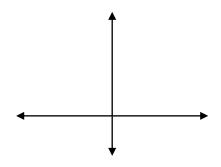
End Behavior:

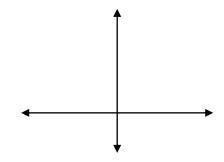
Zeros: ______

Leading term _____

End Behavior:


Zeros: ______


mult:


4)
$$p(x) = (x-2)^2(x+3)$$
 5) $j(x) = -3(x+1)^3x^2$ 6) $f(x) = -(x+3)^5(x-1)$

5)
$$j(x) = -3(x+1)^3 x^2$$

6)
$$f(x) = -(x+3)^5(x-1)^5$$

Leading term _____

End Behavior:

Zeros: ______

mult:_____

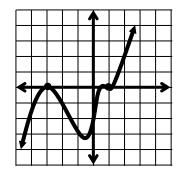
Leading term _____

End Behavior:

Zeros: ______

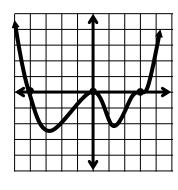
mult:_____

Leading term _____

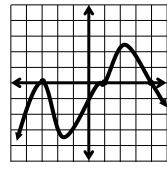

End Behavior:

Zeros: _____

mult:_____

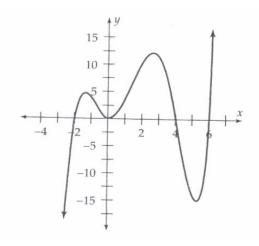

II. Find an equation for the following polynomials. (Factored form.)

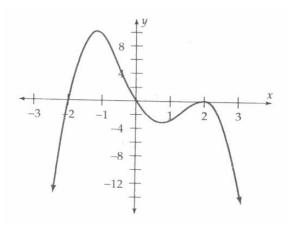
7.


5th degree

8.

6th degree


9.


8th degree

III A complete graph of a polynomial is shown. a) Is the degree even or odd? b) Is the leading coefficient positive or negative? c) What are the real zeros? d) What is the smallest possible degree?

10.

11.

a) _____

a) _____

b) _____

b) _____

c) _____

c) _____

d) _____

d) _____