Mechanisms and Characteristics of Sports Trauma

"How Injuries Happen"

He couldn't decide whether he was coming or going

What You Will Learn

- 1. I can describe the forces that result in tissue injuries
- 2. I can differentiate between the different types of tissues subject to injury
- 3. I can categorize types of soft tissue injuries by characteristics and the forces that cause them
 - I can explain the different types of fractures and the forces that cause them

Mechanical Injury

irlsbe

- With any injury, a force is placed on any part of the body resulting in the changing of function or structure.
- Three types
 Compression

Mechanical Forces

Tension – a force that pulls or stretches the tissue.

Stretching beyond the YIELD POINT causes a structure to tear or break

LaffyTaffy

Compression – a force that, with enough energy crushes tissue

- Compression fractures

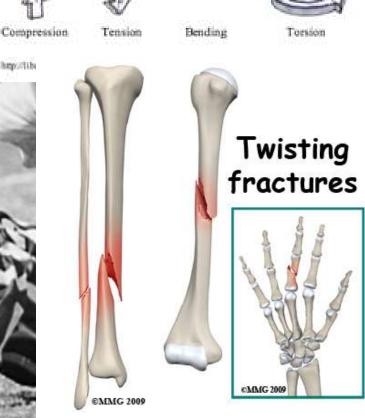
• Pop can

Bending – Compression and tension [forces applied together upon a structure

Tongue depressor

Mechanical forces

- Shearing a force that moves parallel with the tissue Blisters,
 - Abrasions, and
 Disk Injuries


Mechanical forces

Rotation

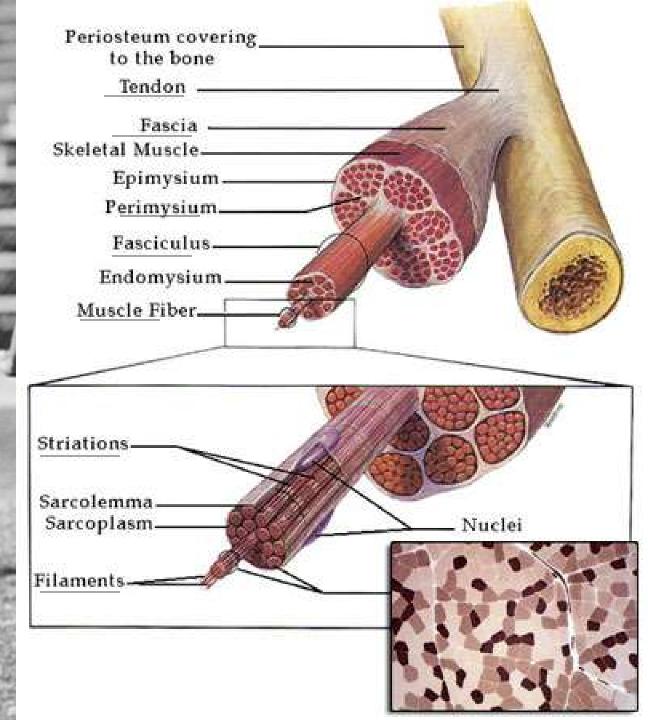
 the action or process of rotating on or as if on an axis or center

Torsion

- the twisting or wrenching of a body by the exertion of forces tending to turn one end or part about a longitudinal axis while the other is held fast or turned in the opposite direction

Soft Tissue Injuries

 T.P.S. – what are the different types of soft tissue in your body? Wound Types/ Classifications -Blisters-Abrasions -Bruise-Laceration -Avulsion-Incision Puncture


-		
)	Abrasions	Surface layer of skin is scraped off
	Puncture	Penetration by a sharp object
1	Incision	A straight/ sharp cut
	Avulsion	Tissue is ripped from its source
(B)	Blister	A collection of fluid below or w/in the top layer of skin
C. L. C. San	Laceration	A jagged cut
113	Bruise	Bleeding under the

 A soccer player (in this picture) has just made a slide tackle. What types of forces are being applied? What are some of the possible injuries that either player could receive

from this motion?

Muscle Types Smooth Cardiac Striated/ Skeletal Musc. Inj.

- Contusions Strains Overexertion
- Spasms/ Cramps

Muscle Strains

- All Strains and Sprains are graded on a 3 tier scale
 - Grade 1 Mild
 - · Local pain w/ little bruising (ecchymosis).
 - Little to no loss of strength.
 - Grade 2 Moderate
 - Moderate pain/ bruising/ swelling
 - Impaired muscle function (i.e. limping)
 - Grade 3 Severe
 - Loss of muscle functio
 - Palpable defect

Muscle Contusions - Grading

Contusions

Ecchymosis (Superficial bleeding)
 Hematoma (Hardening of the blood)
 1st degree- Little or no range of motion loss.
 2nd degree- Noticeable loss or range of motion.

of range of

ed causing

 3rd degree- Severe restriction motion. Fascia may be run muscle tissue to protrude.

Cramps and Spasms

- Cramp A painful involuntary contraction of a skeletal muscle or musc. group.
 - Caused by
 - Spasm reflex reaction caused by trauma
 - Clonic contracting and relaxing
 - Tonic constant contraction

Find a partner.... Massage fin

Muscle Soreness

- Acute Onset Muscle Soreness
 - **Decreased circulation**
 - Lactic Acid and potassium collect within the muscle
 - Which stimulate pain receptors
- **Delayed Onset Muscle Soreness**
 - Caused most by eccentric exercise
 - Cell/ Fiber death within the muscle
- Prevention
 - Good Warm-up
- Extended cool down
- Stretching before and after a

Chronic Muscle Injuries

- An inflammation or irritation of the structure

the

r rep

- Tendonitis inflammation of the tendon
- · Fasciitis inflammation of the fascia
- Myositis inflammation of the muscle

Caused over a longer period of time b wearing away of a structure of acute injuries

itis

Tendons

• Join

Tendons can produce/ maintain a pull from 8,700 - 18,000 lbs/in²

to

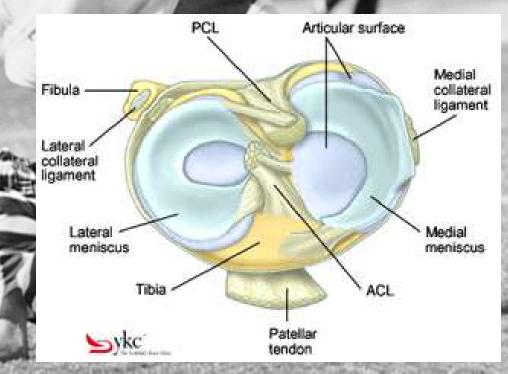
Unloaded Loaded Yield point

What happens when you stretch a slinky too far??? Tendons are actually 2x the strength of the muscle it serves.

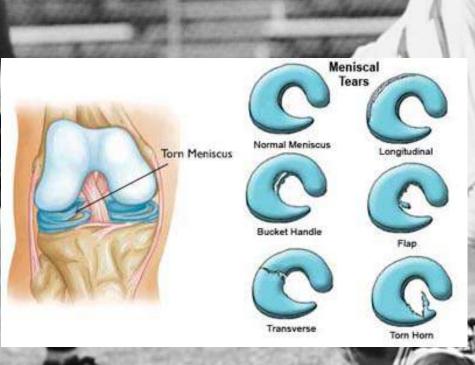
- injuries, therefore, usually occ at the attachment. Ligaments are thickest in the middle, so they usually tear at the ends. Injuries to the ligaments usually happen when a constant stress is put on them over a period of time Intermittent stress actually strengthens the ligaments.

Ligaments

0


Join

Cartilage is the shock absorber between two bones.


Cartilage

Injuries occur after repeated irregular stress

Cartilage Images

Cartilage



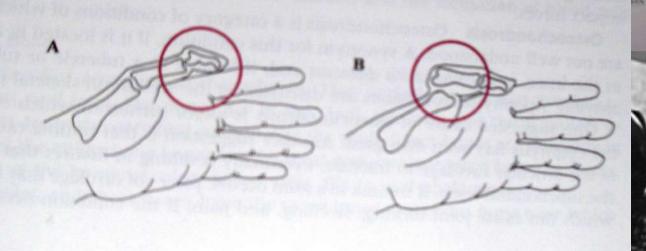
- Traumatic Mechanism
 Shearing with rotation
 Rotation with lateral force
 Posteroanterior force with lateral force
- tation
- Degenerative Mechanis
 - Less elastic and compliant
 - Minor trauma causes damage
- Longitudinal tear extends along length of meniscus; also called circumferential tear
- Radial tear medial to lateral rim; also transverse tear
 - Hom tear tear of either nor or posterior horn of the lial meniscus

- Parrot beak tear neglected radial tear
 - can catch in joint
 - Horizontal tear splits the body of meniscus
 - Usually starts inside
 - Splits into top and bottom through degeneration
 - Can progress to Flap tear

Bucket handle tear – complete torn through

can catch and "lock" the knee typically doesn't heal depending on where located (inner v outer)

Horizontal tear (probe in cleft)


lap tear

Injury Classifications

Ankle Sprain

Sprain Strain Subluxation Dislocations

Participant Statistics

Sprains are graded on a scale 1-3 just like strains.

Review Questions

As a runner, Jen puts a lot of daily stress on her knees, now her patellar tendon is irritated. That is called

Sliding into home Mike scraped off the top layer of skin on his thigh and got pegged by the ball.

a. What forces were being applied?b. What injuries did these forces cause?

3. When Jon ruptured (completely tore) his Achilles tendon, where did it most likely te

4. What would you recommend to someone who is constantly going to practice sore?

Skeletal Trauma

 Bone Functions - Body support- Stores Calcium **Organ Protection-Formation of RBC** - Movement Types of Bone - Flat - skull, ribs, scapula - Irregular - vertebral column, skull - Short - wrist and ankle - Long - humerus, ulna, fen a, tibula phalanges

Weaknesses

- Bones are weak where they change shape and/or direction.
 - Clavicle changes shape and direction at approx. the same spot, therefore that is where the majority of the fx occur.

Depending on the force applied there are 11 different types of fractures (fx)

Fractures

Types of Fractures **Comminuted Fracture Greenstick Fracture Oblique Fracture Spiral Fracture Transverse Fracture Union Fracture**

(incomplete)

Fracture types

Simple

Fracture types

Compound

Oblique

Fractures

Articular fracture

Involves a joint surface. Articular is cartilage at the end of the long bones where bones articulate, or meet.

Avulsion fracture

A separation of a small bone fragment from the bone where a rendon or ligament is attached.

ow out fracture

occur to the wall of the orbit of the eye as a result of a blow to the eye

Fractures

- Closed/simple fracture – Does not break the skin.
- Colles' fracture
 - The lower end of the radius (wrist) with displacement of the fragment.
 - Complete fracture – Completely through bone.

Flexion fracture of the radius (Smith's fracture)

Extension fracture of the radius (Colles' fracture)

-ractures

Simple

Types of Fractures

Compound

Greenstick

Comminuted

Impacted

Impacted fracture

 ends are driven into each other. This commonly occurs with arm fractures in children and is sometimes known as a buckle fracture.

Longitudinal fracture

follows the long axis of the bone.

rated fracture

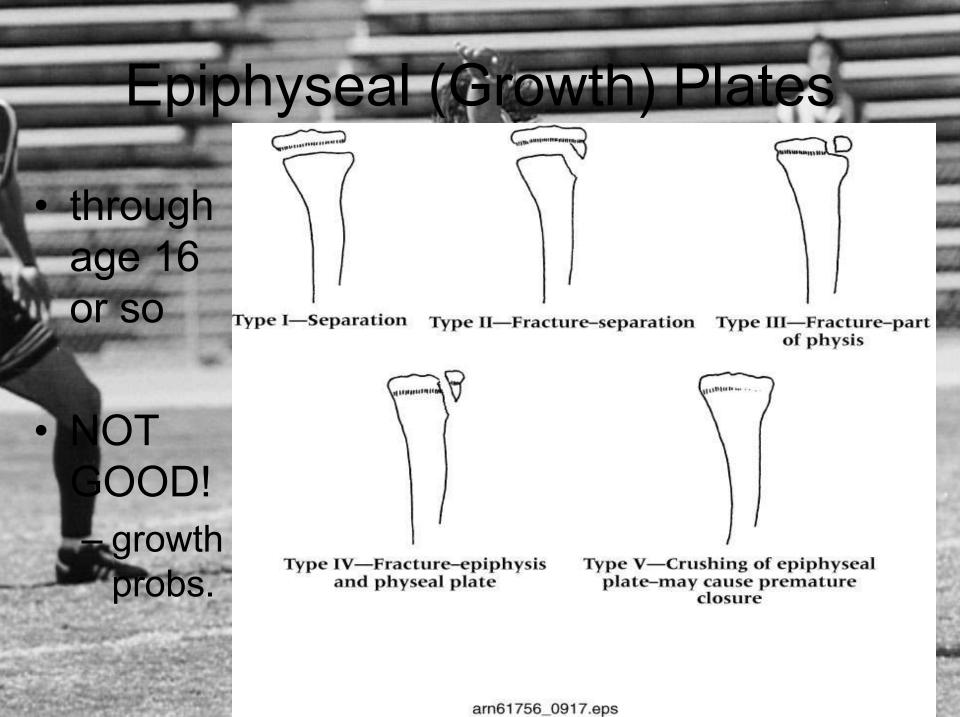
where two bony fragments have a saw tooth, sharp edged fracture line secondary to a direct blow. Severe internal damage to vessels, nerves, and muscles may occur due to the sharp edges.

Stress Fractures

- no specific cause but with a number of possible causes
- Overload due to
 - muscle contraction,
 - altered stress distribution due to muscle fatigue,
 - changes in surface (shoes, surfaces, terrain)

for 2nd event)

SOO


- rhythmic repetitive stress vibrations
- Alternating events (not prep
- Coming back to participation

Stress Fx cont

 Bones get weaker before they become stronger, so if not conditioned well before intense practice starts....

Dx difficult due to gradual onset Sx – swelling, local tenderness, pain w/ activity only, may progress to pain w/ activity and rest.

Tx – rest, ice, compression

· A bowling ball fell on your arm. What type of fracture do you most likely have? What are 3 reasons that cross country runners see the most stress fractures of any other type of athlete? Where is the bone weakest? Why are we so concerned with younger athletes injuring themsel

Review

- Afferent Nerves (Affectors)
- Efferent Nerves (Effectors)
- Tensile forces cause stretching of the nerve fibers.
 - Grade I: Neurapraxia: temporary loss of sensation and/or motor function.

Nerves

- Grade II: Axonotmesis: significant motor and mild sensory losses.
- Grade III: Neurotmesis: motor and sensory losses persisting for up to one year.

