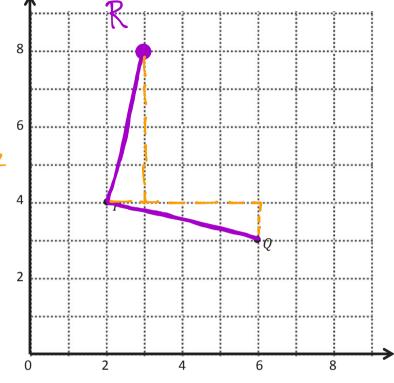
Date

- 1. Use the coordinate plane below to complete the following tasks.
 - a. Draw \overline{PQ} .

Name


- b. Plot point *R* (3, 8).
- c. Draw \overline{PR} .
- d. Explain how you know $\angle RPQ$ is a right angle without measuring it.
- Since the two acute

angles of the reference

triangles are adjacent, we know it is 90°.

 e. Compare the coordinates of points P and Q. What is the difference of the x-coordinates? The y-coordinates?

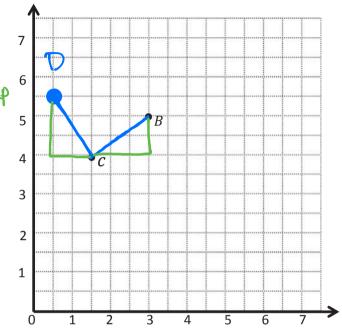
$$x diff = 4$$

$$y xiff = 1$$

f. Compare the coordinates of points *P* and *R*. What is the difference of the *x*-coordinates? The *y*-coordinates?

x diff = f

g. What is the relationship of the differences you found in (e) and (f) to the triangles of which these two segments are a part?


The difference of the X coordinates of P and Q are the same as the difference of the Y coordinates of P and R.

The difference of the y coordinates of P and Q are the same as the difference of the x coordinates of P and R. The differences switched.

- 2. Use the coordinate plane below to complete the following tasks.
 - a. Draw \overline{CB} .
 - b. Plot point $D(\frac{1}{2}, 5\frac{1}{2})$.
 - c. Draw \overline{CD} .
 - d. Explain how you know ∠*DCB* is a right angle without measuring it.
- We know the two acute angles add up to 90°, so LDCB must also be 90°.
 - e. Compare the coordinates of points *C* and *B*. What is the difference of the *x*-coordinates? The *y*-coordinates?

 - f. Compare the coordinates of points *C* and *D*. What is the difference of the *x*-coordinates? The *y*-coordinates?

X diff: =7

y diff = 3

g. What is the relationship of the differences you found in (e) and (f) to the triangles of which these two segments are a part?

The differences of the x courdinates and the y coordinates flipped.

3. \overrightarrow{ST} contains the following points. S: (2, 3)

T: (9, 6)

Give the coordinates of a pair of points, U and V, such that $\overrightarrow{ST} \perp \overrightarrow{UV}$.

$$\frac{v_{:}}{w_{i}} = \frac{2}{\sqrt{2}} \quad \frac{v_{:}}{v_{:}} = \frac{3}{\sqrt{2}}$$
wers
$$\frac{v_{i}}{\sqrt{2}} = \frac{3}{\sqrt{2}}$$

$$\frac{v_{i}}{\sqrt{2}} = \frac{3}{\sqrt{2}}$$

Lesson 16:

Construct perpendicular line segments, and analyze relationships of the coordinate pairs.