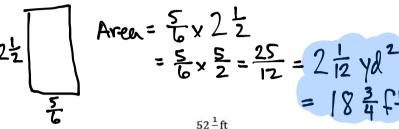
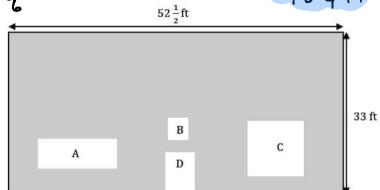

Name


Date ____

1. The width of a picnic table is 3 times its length. If the length is $\frac{5}{6}$ yd long, what is the area in square feet?

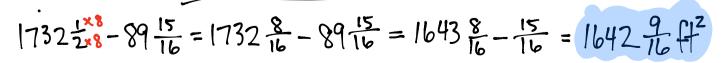

$$W = 3x = \frac{3x5}{62} = \frac{5}{2} = 2\frac{1}{2}$$

2. A painting company will paint this wall. The homeowner gives them the following dimensions:

Window A is
$$6\frac{1}{4}$$
 ft $\times 5\frac{3}{4}$ ft
Window B is $3\frac{1}{8}$ ft $\times 4$ ft
Window C is $9\frac{1}{2}$ ft square

What is the area of the painted part of the wall?

Wall: $33 \times 52 = (33 \times 52) + (33 \times \frac{1}{2}) = |716 + \frac{33}{2} = |716 + |62 = |732 = |7$


Window A: 64x53 = 25 4 x 23 = 575 = 35 16 ft2

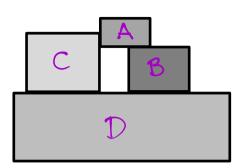
Window B: 3 = x 4 = (3x4)+(=x4)= 12+ = 12 = 12 = f+2

Window C: 91 ft2

 $9\frac{1}{2} + 12\frac{1}{2} + 9\frac{1}{2} + 32$ $= 89\frac{15}{16} + 12\frac{1}{2} + 9\frac{1}{2} + 32$

Door D: 8x4=32 ft2

Lesson 15:


Date:

Solve real world problems involving area of figures with fractional side lengths using visual models and/or equations. 1/10/14

5.C.76

3. A decorative wooden piece is made up of four rectangles as shown to the right. The smallest rectangle measures $4\frac{1}{2}$ inches by $7\frac{3}{4}$ inches. If $2\frac{1}{4}$ inches is added to each dimension as the rectangles get larger, what is the total area of the entire piece?

A:
$$4\frac{1}{2} \times 7\frac{3}{4} = \frac{9}{2} \times \frac{31}{4} = \frac{279}{8} = 34\frac{7}{8} \text{ in}^2$$

75:
$$(6\frac{3}{4} \times 10) = (6\times10) + (\frac{3}{4}\times10) = 60 + \frac{30}{4} = 60 + 7\frac{1}{2} = 67\frac{1}{2}$$
 in²

C:
$$9 \times 124 = (9x12) + (9x4) = 108 + 9 = 108 + 24 = 1/04in^2$$

T:
$$11\frac{1}{4} \times 14\frac{1}{2} = \frac{45}{4} \times \frac{29}{2} = \frac{1305}{8} = 163\frac{1}{8} \text{ in}^2$$

Total:

$$34\frac{7}{8} + 67\frac{1}{2} + 10\frac{1}{4} + 163\frac{1}{8} = 374 + \frac{7}{8} + \frac{1}{8} + \frac{1}{2} + \frac{1}{4}$$

$$= 375\frac{3}{4} \text{ in}^2$$

The total area is 375 \(\frac{3}{4} \) in 2.

Lesson 15:

Date:

Solve real world problems involving area of figures with fractional side lengths using visual models and/or equations.

5.C.77