Multiply.

9 x 1 =
$$\frac{9}{1}$$

9 x 2 = $\frac{18}{18}$

9 x 3 = $\frac{27}{18}$

9 x 1 = $\frac{9}{18}$

9 x 2 = $\frac{18}{18}$

9 x 1 = $\frac{9}{18}$

9 x 2 = $\frac{18}{18}$

9 x 3 = $\frac{27}{18}$

9 x 2 = $\frac{18}{18}$

9 x 3 = $\frac{27}{18}$

9 x 2 = $\frac{18}{18}$

9 x 3 = $\frac{27}{18}$

9 x 2 = $\frac{18}{18}$

9 x 3 = $\frac{27}{18}$

9 x 3 = $\frac{27}{18}$

9 x 3 = $\frac{27}{18}$

9 x 4 = $\frac{36}{18}$

9 x 3 = $\frac{27}{18}$

9 x 4 = $\frac{36}{18}$

9 x 3 = $\frac{27}{18}$

9 x 4 = $\frac{36}{18}$

9 x 3 = $\frac{27}{18}$

9 x 4 = $\frac{36}{18}$

9 x 3 = $\frac{27}{18}$

9 x 4 = $\frac{36}{18}$

9 x 5 = $\frac{47}{18}$

9 x 4 = $\frac{36}{18}$

9 x 5 = $\frac{47}{18}$

9 x 6 = $\frac{47}{18}$

9 x 7 2 = $\frac{18}{18}$

9 x 8 3 = $\frac{27}{18}$

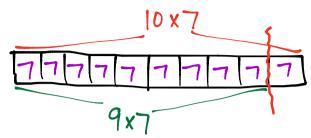
9 x 8 3 = $\frac{27}{18}$

9 x 8 4 = $\frac{36}{18}$

9 x 8 5 = $\frac{47}{18}$

© Bill Davidson

Lesson 14: Date: Identify and use arithmetic patterns to multiply. 7/31/13


1. Multiply. Then add the digits in each product.

10 × 9 = 90	<u>9</u> + <u>0</u> = <u>9</u>
9 × 9 = 81	<u>8</u> + <u>1</u> = <u>9</u>
8×9= 72	7 + 2 = 9
7×9= 63	<u>_</u>
6 × 9 = 5 4	5 + 4 = 9
5×9= 45	<u>4</u> + <u>5</u> = <u>9</u>
4×9= 36	<u>3</u> + <u>6</u> = <u>9</u>
3×9= 27	2 + 7 = 9
2 × 9 = 8	<u> </u>
1 × 9 =	<u>U</u> + 9 = 9

What pattern did you notice in the table? How can this strategy help you check your work with nines facts?

For each product in the 9 times tables, the sum of the digits in the product is always 9.

Thomas calculates 9×7 by thinking about it as 70 - 7 = 63. Explain Thomas' strategy.

10 sevens is 70, but Thomas want 9 sevens so he needs to subtract 7 from 70 to get 9x7 = 63.

3. Alexia figures out the answer to 6 × 9 by lowering the thumb on her right hand, shown below. What is the answer? Explain Alexia's strategy.

There are 5 fingers still standing to the left of the lowered finger. Think "50".

There are 4 fingers still standing to the right of the lowered finger. Think "4". 50 + 4 = 54

4. Travis writes $72 = 9 \times 8$. Is he correct? Explain at least 2 strategies Travis can use to help him check his work.

$$9x8 = 10x8 - 8$$

= $80 - 8$
= 72

$$9x8 = (5+4) \times 8$$

= (5x8) + (4x8)
= 40 + 32
= 72