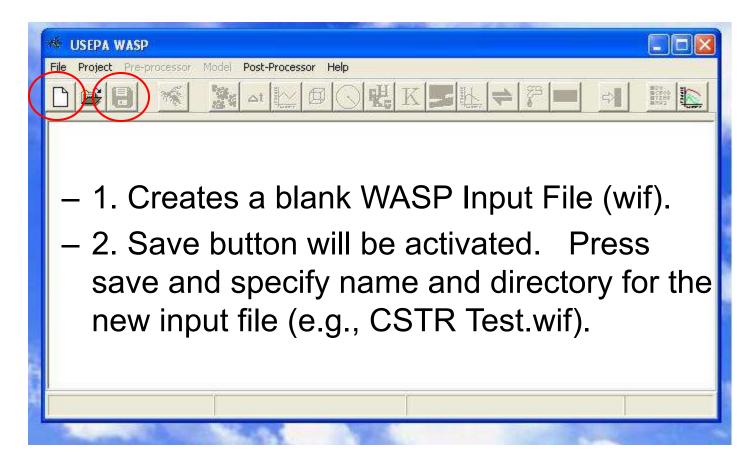

Introduction to the WASP Interface



Introduction to WASP Interface

Create New WASP Input File

Open Existing WASP Input File

👐 USEPA W	ASP				
File Project I	Pre-processor M	iodel Post-Processor	Help		
		2			
Open					? 🛛
Look in:	Toxi Test Ri	uns	•	+ 🗈 💣 📰 +	
My Recent Documents Desktop My Documents My Computer	Biotic Solids 2 Benthic Diffus Biotic Solids C Solids C Strain Test.wi	sion Test.wif ISTR2.wif ISTR.wif if			
My Network Places	File name:			· [Open
11000	Files of type:	WASP Files			Cancel

WASP Input Data Categories

🤲 USEPA WASI	P: (Unnamed	WASP Inpu	it Data Set, Ei	itrophication)			
File Project Pre-	processor Mod	el Post-Proce	essor Help				
	***	🙀 🛆 t 📐		G K <mark>≫</mark> ₩_	- 🌮 🔀	=	
	- 26 - 26 - 26 - 26 - 26 - 26 - 26 - 26						

Simulation Control

i

arameters			
Description		Model Type	-, rRestart Option
CSTR Test		Eutrophication	No Restart File
Comments		Eutrophication Simple Toxicant	C Create Restart File
Simple Class Example		Non-Ionizing Toxicant Organic Toxicants Mercury Heat Test (Do Not Use)	C Load restart file now
Time Range	Non Point Source	File	Bed Volumes
Start Date	Use NPS file	Browse	Static C Dynamic
1/1/2005			Bed Compaction Time Step
Start Time			0.00
0:00	Hydrodynamics Net Flows		
End Date	C Gross Flows C 1-D Network I C Hydrodynamic Hydrodynamic Lir	: Linkage	Time Step
End Time		1	Negative Solution Allowed
	Browse	Hydro Skip Date	
	Solution Techniqu	Je 12/30/1899	
	Euler	Hydro Skip Time	
		15:58	🚽 🗸 OK 🛛 🗶 Cance

SIVIRON

Time Step

+

+

i

				K 📮
** 1	ime Step			
	Date	Time	Value	
1	1/1/2005	0:00	0 1000	
2	2/ 1/2005	0:00	0.1000	

Print Interval

╋

i

6	8			K			
🤹 Print Interval							
	Date	Time	Value	and Capital			
1	1/1/2005	0:00	1.00				
2	2/1/2005	0:00	1.00				

+

Segment Properties - Geometry

	File	Project	Pre-process	\sim	Post-Process	for Help	K , K 5	₩ <u></u>	کم ا	4	BD0 BCE00D BTEMP BHH3	
Segments	1 C C C C C C C C C C C C C C C C C C C	nitial Conce	otrations E	action Dissol	ved							
begment	1	Volume	Velocity	Velocity	Depth	Depth	Segment	Bottom	Length	Width	Slope	Bottom
				Exponent		1	Contract Contract Contract	Segment				Roughne
1	Wasp Segment	1E+4	0.0000	0.0000	1.0000	0.0000	Surface Wate 💌	None	0.0000	0.0000	0.0000	0.0000
<							Surface Water Subsurface Water Surface Benthic Subsurface Benth					
-	Calc 📔 📴 C	opy 6	Reaste			me Scale Fac 1.0000000		Conversion Fa	ctor			

Segment Properties - Parameters

All second second second	SP: C:\Wasp7\Toxi Test R e-processor Model Post-Proc	RunsACSTR Test.wif (CSTR ressor Help	Test, Simple Toxicant)		Star Land
		\frown	≤₩		
Segments Parar	meters Initial Concentrations F	Fraction Dissolved			
Segment	Dissolved Organic Carbor	Partition Coefficient to Silt:	Partition Coefficient to Sand	Partition Coefficient to Organic	Decay Rate Constant (per day)
1	0	0	0	0	α
Fill/Calc	Copy Paste				
+ Insert	- Delete	DK X Cancel			

Segment Properties – Initial Concentrations

844 IL. 47			
oncentrations Fraction Disso	lved		
	Fines (mg/L) S	and (mg/L) Orga	nic Solids (mg/L)
10	0	0	
	oncentrations Fraction Disso	oncentrations Fraction Dissolved	oncentrations Fraction Dissolved At (mg/L) Sand (mg/L) Orga

Segment Properties – Fraction Dissolved

WE USEPA V	WASP: C:\Wasp7\Toxi T	est Runs\CSTR Test.wif (CS	TR Test, Simple Toxi	cant) 📃 🗖 🔀
File Project	Pre-processor Model Pos	t-Processor Help		
			5 14 14 17	
Segments		Fraction Dissolved		
Segments Param	eters Initial Concentrations	Silts and Fines (mg/L)	Sand (mg/L)	Organic Solids (mg/L)
1	1.0000	0.0000	0.0000	0.0000
Fill/Calc	Copy Copy			
+ Insert	- Delete	OK 🛛 🗙 Cancel		

Systems

Fi	USEPA WASP: C:Ne Project Pre-proces	sor Model	Post-Processor	Help		5		1			144	
l S	ystem Data											
	System	Option	Particulate	Mass	Dispersion	Flow	Density	Maximum	Boundary	Boundary	Loading	Loading
			Transport Field	Balance	Bypass	Bypass	19. 19.	Concentration	Scale Factor	Conversion Facto	Scale Factor	Conversion Facto
1	Toxicant (mg/L)	Simulated	Solids 1				1.0000	100.0000	1.0000	1.0000	1.0000	1.0000
2	Silts and Fines (mg/L)	Simulated	Solids 1				2.6500	2000000.000	1.0000	1.0000	1.0000	1.0000
3	Sand (mg/L)	Bypassed	Solids 2				2.6500	2000000.000	1.0000	1.0000	1.0000	1.0000
4	Organic Solids (mg/L)	Bypass 🔻	Solids 3				2.6500	2000000.000	1.0000	1.0000	1.0000	1.0000
		Simulated Constant Bypassed			1 02 20 01		2.1703041					>

Parameters – Switch

roject	Pre-processor Model Post-Processor He	K.	X S L	Des op Des op De
🐐 Pai	rameter data			
	Parameter	Used	Scale Factor	
1 D)issolved Organic Carbon (mg/L)		1.0000	
2 P	Partition Coefficient to Silts and Fines (L/kg)	X	1.0000	
3 P	Partition Coefficient to Sand (L/kg)		1.0000	
4 P	Partition Coefficient to Organic Solids (L/kg)	F	1.0000	
5 D)ecay Rate Constant (per day)		1.0000	

.

Constants

ŝ			K K		
(Constants Data				
or	nstant Group				
	xicant 📃				
No.	lids	Used	Value	Minimum	Maximum
1	Log10 of Partition Coefficient to DOC (L/kg)		0	0.0000	7.0000
2	Partition Coefficient to Silts and Fines (L/kg)	X	1E+5	0.0000	0000000.0000
			0	0.0000	100000.0000
3	Partition Coefficient to Sands (L/kg)		P ^o	202020	100000.0000
3 4	Partition Coefficient to Sands (L/kg) Partition Coefficient to Organic Solids (L/kg)		0	0.0000	0000000.0000
0.00			0	0.0000	
4	Partition Coefficient to Organic Solids (L/kg)		0		0000000.0000

Direct Loads

i

		p7\Toxi Test Run Model Post-Process	sVCSTR Test.wif (CSTR or Help	(Test, Simple Toxican
) 🗃				s 🛌 🚧 🖉 🕶
🔨 Loa	ıds			
Loads	Scale and Conversi	on Factors		^
	Loads	Add/Remove Loads Add All Loads Delete All Loads		
Time fui	nctions for segment 1 Date	(Wasp Segment), Toxi Time	icant (mg/L) Value	
	+ Insert	- Delete	Delete All	Graph

Direct Loads, continued

+

	t 🔛 🗇 (<mark>▶ 🖓 🍕 1</mark>
Loads				
oads Scale and Convers	ion Factors			110-0
Loads Toxicant (mg/L Wasp Segr Wasp Segr Silts and Fines (Band (mg/L)	m ^{g/L)} CONCE	variables entrations		J/L have
Programic Solids (ne functions for segment 1	(Wasp Segment), To		in kg/	day
ne functions for segment 1 Date	(Wasp Segment), To	Value	in kg/	day
ne functions for segment 1	(Wasp Segment), To Time 0:00 (in kg/	day
ne functions for segment 1 Date 1/ 1/2005	(Wasp Segment), To Time 0:00 (Value		day Graph

Kinetic Time Functions

+

ł

Ti	me Funct	lions			
		Time F	unction		Used
	Biotic Solids	Production Time	e Function Mu	ultiplier	
e/v	alue pairs fo Dal	r Biotic Solids Pr te	oduction Time		Multiplier Value
		te			20 T T T T
	Da	te	Time	1	20 T T T T
2	Da 1/ 1/2	te 2005	Time 0:00	0	20 T T T T
	Dai 1/1/2 2/1/2	te 2005 2005	Time 0:00 0:00	0	

Dispersive Exchanges

hange Fields				Pore	Water functions		
Field	Used	Scale	Conversion	rue	water runctions	Function	
Surface Water		1.0000000	1.0000000		Benthic Exchang	e	1
Pore Water	X	1.0000000	0.0001000			6	
Boundary	1: Wasp Se	<u>⊒ ±</u> 10000.00	0000 0.1000000	•	1/1/2005 2/1/2005	0:00 0:00	1E-5 1E-5
	1	a n	I 😿 Graph	1			🗸 ок
+ Insert	- Delete	The Delete A	i por craph	÷.,			

Dispersive Exchanges

Exchanges								
hange Fields				Pore	Water functions			
Field	Used	Scale	Conversion	- r	E al Luca de Estado	Function		
Surface Water Pore Water		1.0000000	1.0000000		Exchange Functi	on		1
and the second se	and the second se	and the second se	Distance	Time	/value pairs for P	1177 S	Contract of Contract of Contract of Contract	on
gment pairs for Pore Segment one	and the second se	and the second se	Distance	Time/	/value pairs for P Date 1/ 1/2005 2/ 1/2005	ore Water, Exe Time 0:00 0:00	change Functi Value 0	on

+

Dispersive Exchanges - continued

xchange Fields				Pore	Water functions			
Field	Used	Scale	Conversion	Fule	water runctions	Function	1	
Surface Water		1.0000000	1.0000000	-	Benthic Exchang	e		
Pore Water	X	1.0000000	0.0001000					
 Boundary 	1: Wasp Se		000 0.1000000		1/1/2005	0:00	1E-5	
	1: Wasp Se Boundary	gmer		•	2/ 1/2005	0:00	1E-5	
		帚 Delete All	📔 👿 Graph				🗸 ок	_

Dispersive Exchanges continued

• 6	ixchanges								×
kcha	ange Fields	C. C.		2000000000000	Pore	Water functions			
	Field	Used	Scale	Conversion			Function		
	Surface Water Pore Water		1.0000000	1.0000000		Benthic Exchang	e		
egm	ient pairs for Pore Wa	ter, Benthic	: Exchange		 Time.	/value pairs for P	ore Water, Ber	nthic Exchange	
gm		ter, Benthic S egment I		Distance	Time.	Value pairs for Po Date	ore Water, Ber Time	nthic Exchange Value	
egm	Segment one	Segment I			Time.	1 CSN 17CN		The second secon	
:gm	Segment one	Segment I	two Area		Time.	Date	Time	Value	

+

I

Advective Flows

+

	Flows							
14	Fields		C 1		Surfa	ice Water function		
	Field	Used	Scale				Function	
	Surface Water	×	1.0000000	1.0000000	•	Flow Function		
	Pore Water		1.0000000	1.0000000				
	Solids 1		1.0000000	1.0000000				
	Solids 2		1.0000000	1.0000000				
	Solids 3		1.0000000	1.0000000				
	Evaporation/Precipitatic		1.0000000	1.0000000				
1	ment pairs for Surface Wa	ater, Flov	v Function		Time	/value pairs for S	urface Water,	Flow Function
	From	To	Frac. o	f flo [,]		Date	Time	Value
						1/ 1/2005	0:00	0
						2/ 1/2005	0:00	0
						Z7 17Z003		
					-	27 172003	0.00	

Advective Flows - continued

+

functions
Function
roughflow
12
irs for Surface Water, CSTR Throughf
e Time Value
005 0:00 0

TAL PROTECT

Advective Flows - continued

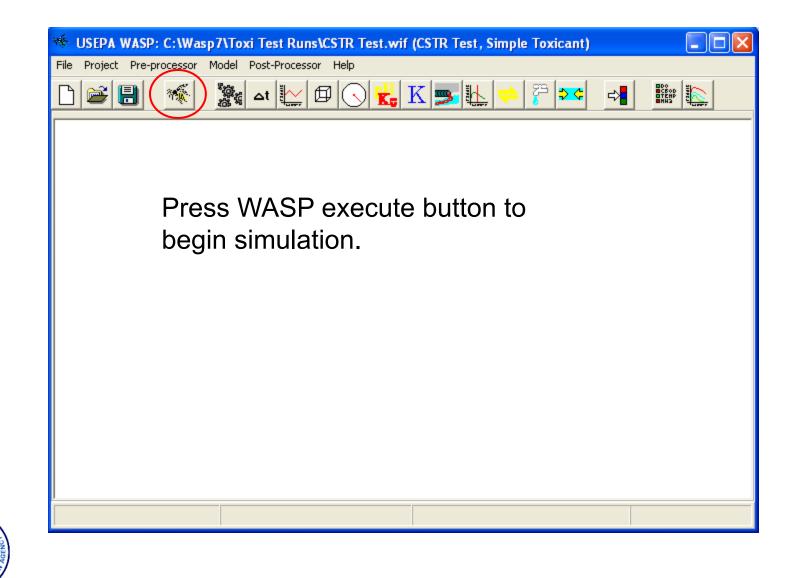
+

nctions Function	
Function	
and the second second	
ughflow	
for Surface Water	CSTB Through
Time	Value
5 0:00	1E+3
5 0:00	1E+3
	for Surface Water,

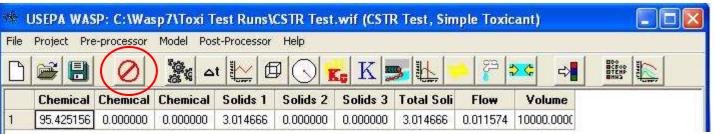
Boundaries

+

i


Re Bo	undaries			
2. 2.2	daries Scale and Conv	version Factors		
12	Sand (mg/l)			
÷		Wasp Segment), Toxi	CONTRACTOR OF A DECISION	
÷	Dirganic Solids (m unctions for segment 1 (Date	Wasp Segment), Toxi Time	Value	
÷	Organic Solids (munctions for segment 1 (Date 1/ 1/2005	Wasp Segment), Toxi Time 0:00	Value 1E-2	
÷	Dirganic Solids (m unctions for segment 1 (Date	Wasp Segment), Toxi Time	Value	
÷	Organic Solids (munctions for segment 1 (Date 1/ 1/2005	Wasp Segment), Toxi Time 0:00	Value 1E-2	 Graph

WASP Output Variable Selection


) 😂 📳 🚿		ı 🔛 🗗 🚫 🔥 K 🗾 🗄	. 🍋 🍄 🔜	=	DDO DCEOD DTEHP BHH2
		Output Control			
		Description	Units	Output	CSV
	1	Total Solids	mg/L	X	X
	2	Silts and Fines	mg/L	X	
	з	Sand	mg/L	X	
	4	Organic Solids	mg/L	X	
	5	Segment Temperature	°C	X	
	6	Velocity	m/sec	X	
	7	Depth	m	X	
	8	Advective Flow	m3/sec	X	
	9	Total Concentration	ug/L	X	X
	10	Dissolved Concentration	ug/L	X	
1000	11	DDC Sorbed Concentration	ug/L	X	
	12	Total Sorbed Concentration	ug/L	X	
	13	Total Sorbed Concentration (solids)	ug/kg	X	
	14	Maximum DT	days	X	
	15	Time Chen	daua	121	E330

Execute Model Simulation -1

Execute Model Simulation - 2

Stop

A table of calculated concentrations will be displayed throughout the simulation.

Status and error messages will be displayed. Progress through the simulation is summarized along the bottom bar. A control slide can be used to speed up, slow down, or freeze the simulation.

The simulation can be aborted by pressing the stop button (circled above).

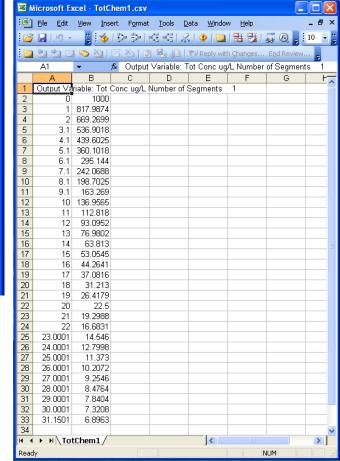
Turbo Simulation Time: 1/13/2005 0:00:01

Time remaining: 0:00:01

Execute Model Simulation - 3

🗊 Getting Model Parameterization Data

- CF Getting Dispersion Information
- Getting Segment Volumes Information
- C Getting Flow Information
- 🕼 Getting Time Variable Boundary Information
- 🕼 Getting Time Variable Loadings
- 🕼 Getting Segment Specific Environmental Conditions
- 🗊 Getting Kinetic Constants
- 🗊 Getting Environmental Time Functions
- 📭 Getting Initial Conditions
- 📭 Euler Solution Technique
- 📭 Begin Time Loop -- Simulation Started
- 🗊 Closing Simulation Result File
- 📭 Result File Closed


When the result file is closed, simulated results can be viewed by launching the WASP postprocessor, or by opening the variable csv files that were created.

WASP Output csv file

	Aicrosoft Ex	xcel - TotC	hem1.csv					
:1	<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>I</u> nse	ert F <u>o</u> rmat	<u>T</u> ools <u>D</u>	ata <u>W</u> indov	v <u>H</u> elp		_ 8 ×
1	🚽 🔊 -	📲 🗄 🍲	1 20 20 10	KE KE <i>9</i>	2 🚸 🛅	田間。	a 🙆 📮 i	10 🝷 📮
:		0	351		₩v Reply with	n ⊆hanges…	End Review.	
	A1				fot Conclug			
	A	В	С	D	E	F	G	۲,
1	Output Va	riable: Tot (Conc ug/L l	Number of 3	Segments	1		
2	0	1000						
3	1	817.9874						
4	2	669.2699						
5	3.1	536.9018						
6	4.1	439.6025						
7	5.1	360.1018						
8	6.1	295.144						
9	7.1	242.0688						
10	8.1	198.7025						
11	9.1	163.269						
12	10	136.9565						

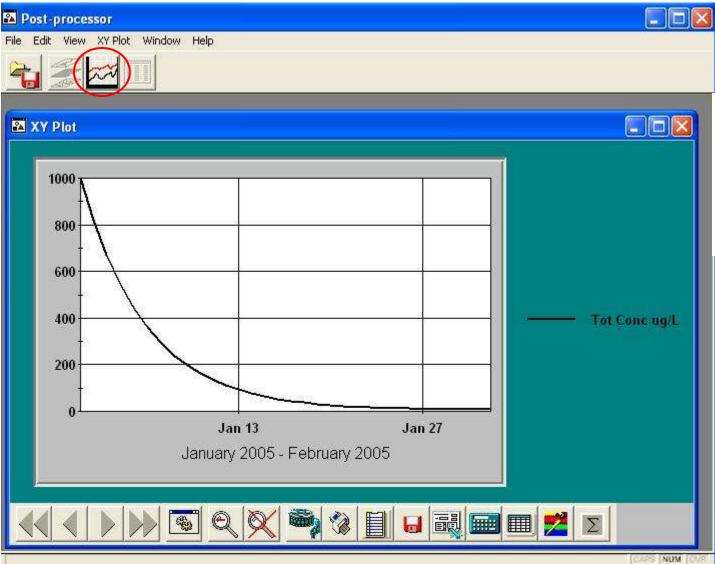
Output variable by segment in columns

WASP Postprocessor Select Output File

Post-processor							
File View Window							
Open File					? 🗙	1	
Look in: My Recent Documents Desktop My Documents	Toxi Test F Biotic Solids & Benthic Diffu Biotic Solids & Biotic Solids & CSTR Test. B Small River 1	2 Ision Test.BMD CSTR2.BMD CSTR.BMD	• •	*			Press for list output (*.BMI Highlig
My Computer							select
My Network Places	File name:	CSTR Test.BMD	 _	[Open	•	Press
1 10000	Files of type:	Supported File Types	×		Cancel		

- Press File Open for list of WASP output files (*.BMD)
- Highlight and select output file

CAPS NUM OVR


Open

WASP Postprocessor Select Variable and Segment to Plot

Post-processor			
File View Window Help			
XY Parameters	? 🗙		1.
Curves General Domain Primary Range Secondary I	Range		2
	Curve Attributes	? 🛛	
Add Curve Load Layout	Data Representation Mis Data Source Predicted C Observed C Calculated	Predicted data C:\WASP7\TOXI TEST RU	3.
Delete Eurve Save Layout Edit Curve Empty Curves	Variables Silts and Fines m Sands mg/L Organic Solids mg Water Temp *C	Segment S#1: Wasp Segment	
	Velocity Depth m Flow m3/sec Tot Conc ug/L		5.
Delete Eurve Save Layout	Variables Silts and Fines m Sands mg/L Organic Solids mg Water Temp *C Velocity Depth m Flow m3/sec Tot Conclug/L	Segment S#1: Wasp Segment	

- 1. Press X-Y Plot button
- 2. Press Add Curve button
- Highlight and select variable and segment and press OK button
- 4. Repeat 2 and 3 for additional variables & segments on graph
- Press OK button to view graph

WASP Postprocessor Example Graph

Press Add Curve button to create more graphs

WASP Postprocessor Example Table

Edit View XY Plot Window	пар				
XY Plot					
1	🕰 Table				
1000		Tot Conc ug/L (1) X	Tot Conc ug/L (1) Y		
-\	1	1/1/2005 0:00:00	1000.00		
800	2	1/2/2005 0:00:00	817.99		
- \	3	1/3/2005 0:00:00	669.27		
600	4	1/4/2005 2:23:59	536.90		
	5	1/5/2005 2:23:59	439.60		
400	6	1/6/2005 2:23:59	360.10		
400	7	1/7/2005 2:23:59	295.14		
	8	1/8/2005 2:23:59	242.07		
200	9	1/9/2005 2:23:59	198.70		
+	10	1/10/2005 2:23:59	163.27		
01	11	1/11/2005 0:00:00	136.96		
	12	1/12/2005 0:00:00	112.82		
	12				
	<u></u>			<u> </u>	
	961	xx/3881.xx/mul			

Press Tabular Results button to display table of results