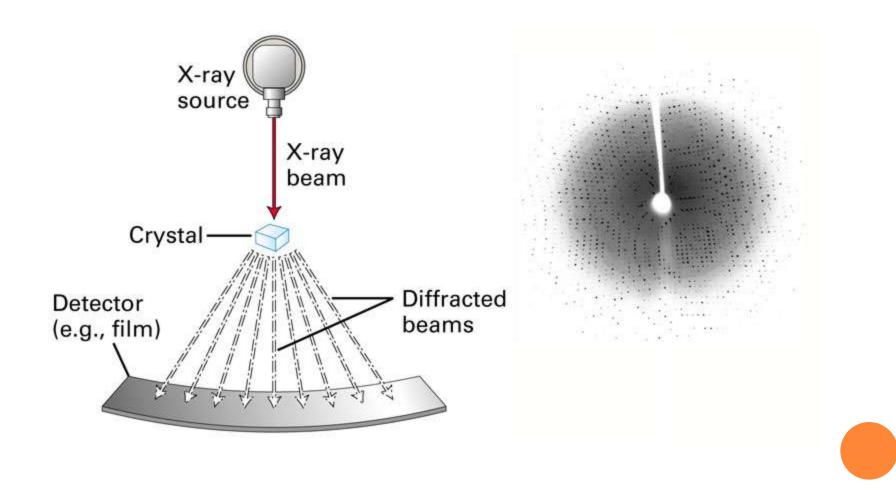
VSEPR THEORY AND MOLECULAR GEOMETRIES

VSEPR THEORY


OVSEPR (pronounced "vesper") stands for:

- <u>Valence Shell Electron Pair Repulsion</u>
- **O** It attempts to explain the 3-D shapes of molecules.

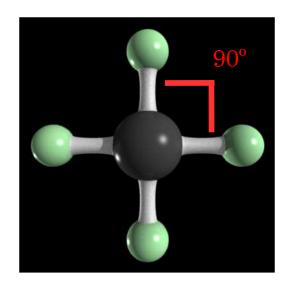
• How do we know what molecules look like?

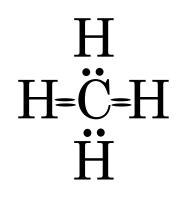
- X-Ray Crystallography
- X-rays are fired through a crystallized sample of a substance and are diffracted in many directions.
- By carefully studying the directions and intensity of the diffracted X-rays, a crystallographer can tell a lot about the locations of atoms within the crystal.
- Remember, theories explain observations!
 - VSEPR Theory explains the <u>observed</u> shapes of molecules.

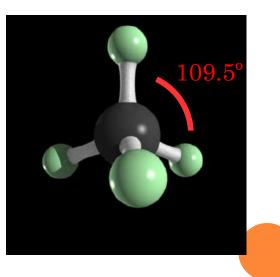
X-RAY CRYSTALLOGRAPHY

VSEPR THEORY

• The basic principles of VSEPR Theory:


- Electron pairs repel each other.
- Electron pairs in molecules tend to arrange themselves so as to minimize the repulsion between them.


•In other words, get as far apart as possible.


THE GEOMETRY OF CH₄

•Based on the Lewis structure of methane, you might expect the geometry on the left.

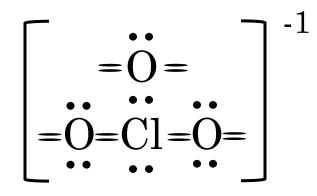
- VSEPR theory predicts the geometry on the right.
- The geometry on the right is confirmed by observations.

The spheres represent the centers of the carbon and hydrogen atoms.

VSEPR FORMULAS

OLewis structures *do not* show geometry, only electron pair placement.

- However, the 3-D shape (geometry) of a molecule *can* be determined from a properly-drawn Lewis structure.
- All monocentric molecules can be represented by a VSEPR formula:

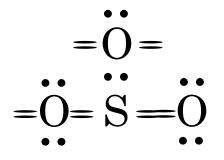

OAXE

- A = central atom
- X = outer atoms (doesn't matter what they actually are or how many bonds they are held by)
- E = lone pairs of electrons on the central atom only.

VSEPR FORMULAS

• What VSEPR formula corresponds to the chlorate ion, ClO₃-1?

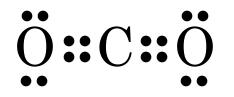
- First draw a proper Lewis structure:
 - \bigcirc Needed = 32
 - OAvailable = 26
 - OShared = 6

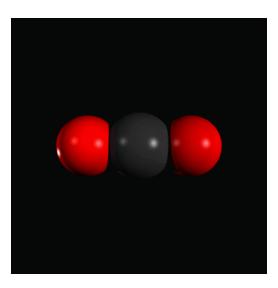


One central atom, three outer atoms, one lone pair:
 OAX₃E

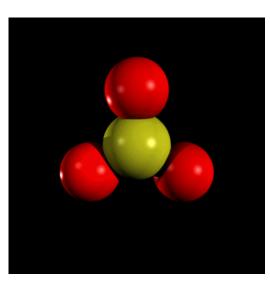
VSEPR FORMULAS

• What VSEPR formula corresponds to sulfur trioxide, SO₃?

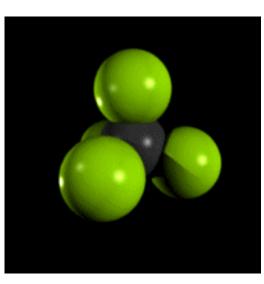

- Draw a Lewis structure.
 - \bigcirc Needed = 32
 - OAvailable = 24
 - OShared = 8



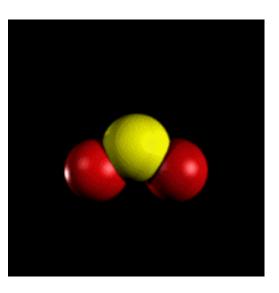
1 central atom, 3 outer atoms, no lone pairs:
 OAX₃


- Each VSEPR formula corresponds to a certain molecular geometry.
 - There are six possible geometries for molecules whose central atoms obey the octet rule.

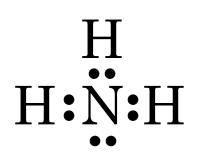
OVSEPR Formula: AX2
OGeometry: Linear
OBond Angle: 180°
OExample: CO2

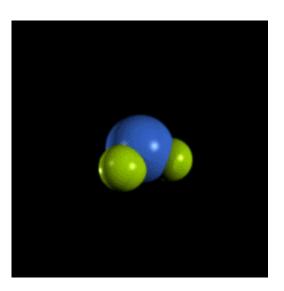



OVSEPR Formula: AX₃
OGeometry: Trigonal Planar
OBond Angle: 120°
OExample: SO₃



OVSEPR Formula: AX4
OGeometry: Tetrahedral
OBond Angle: 109.5°
OExample: CCl4




OVSEPR Formula: AX₂E
OGeometry: Bent (Angular)
OBond Angle: Less than 120°
OExample: SO₂

OVSEPR Formula: AX₃E
OGeometry: Trigonal Pyramidal
OBond Angle: Less than 109.5°
OExample: NH₃

OVSEPR Formula: AX₂E₂
OGeometry: Bent (Angular)
OBond Angle: Less than 109.5°
OExample: H₂O

Н:О:Н