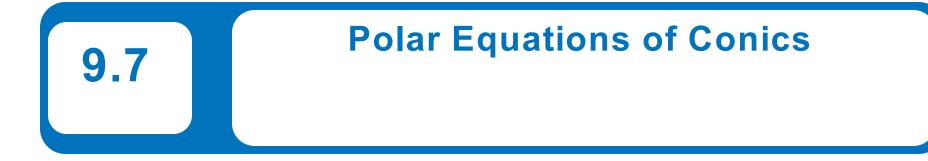
Topics in Analytic Geometry



Copyright © Cengage Learning. All rights reserved.

What You Should Learn

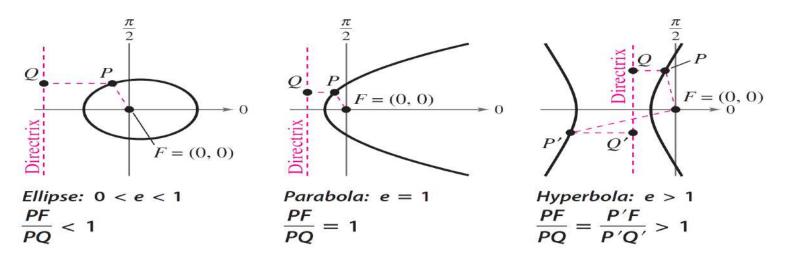
- Define conics in terms of eccentricities, and write and graph equations of conics in polar form
- Use equations of conics in polar form to model real-life problems

Alternative Definition of Conics and Polar Equations

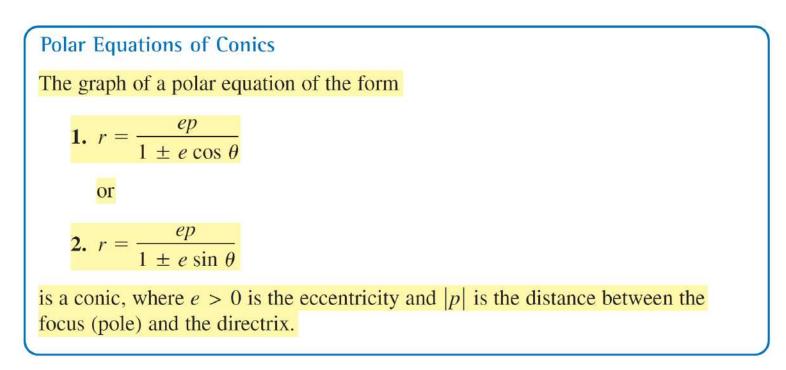
To begin, consider the following alternative definition of a conic that uses the concept of eccentricity (a measure of the flatness of the conic).

Alternative Definition of a Conic

The locus of a point in the plane that moves such that its distance from a fixed point (focus) is in a constant ratio to its distance from a fixed line (directrix) is a **conic.** The constant ratio is the **eccentricity** of the conic and is denoted by *e*. Moreover, the conic is an **ellipse** when 0 < e < 1, a **parabola** when e = 1, and a **hyperbola** when e > 1. (See Figure 9.79.)



The benefit of locating a focus of a conic at the pole is that the equation of the conic becomes simpler.



Alternative Definition of Conics and Polar Equations

An equation of the form

$$r = \frac{ep}{1 \pm e \cos \theta}$$

Vertical directrix

corresponds to a conic with a vertical directrix and symmetry with respect to the polar axis.

An equation of the form

 $r = \frac{ep}{1 \pm e \sin \theta}$ Horizontal directrix

corresponds to a conic with a horizontal directrix and symmetry with respect to the line $\theta = \pi/2$.

Moreover, the converse is also true—that is, any conic with a focus at the pole and having a horizontal or vertical directrix can be represented by one of the given equations.

Example 1 – Identifying a Conic from Its Equation

Identify the type of conic represented by the equation

$$r = \frac{15}{3 - 2\cos\theta}$$

Solution:

To identify the type of conic, rewrite the equation in the form $r = ep/(1 \pm e \cos \theta)$.

$$r = \frac{15}{3 - 2\cos\theta}$$
$$= \frac{5}{1 - (2/3)\cos\theta}$$

Divide numerator and denominator by 3.

Because $e = \frac{2}{3} < 1$, you can conclude that the graph is an ellipse.

For the ellipse in Figure 9.80, the major axis is horizontal and the vertices lie at

$$(r, \theta) = (15, 0) \text{ and } (r, \theta) = (3, \pi).$$

So, the length of the *major* axis is 2a = 18.

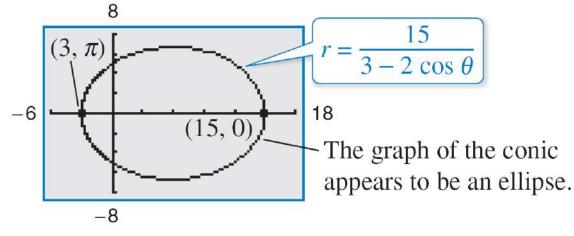


Figure 9.80

Alternative Definition of Conics and Polar Equations

To find the length of the *minor* axis, you can use the equations e = c/a and $b^2 = a^2 - c^2$ to conclude that

 $b^2 = a^2 - c^2$ = $a^2 - (ea)^2$ = $a^2(1 - e^2)$

Ellipse

Alternative Definition of Conics and Polar Equations

Because, $e = \frac{2}{3}$, you have

$$b^2 = 9^2 \Big[1 - \Big(\frac{2}{3} \Big)^2 \Big]$$

= 45

which implies that

$$b = \sqrt{45}$$
$$= 3\sqrt{5}$$

So, the length of the minor axis is $2b = 6\sqrt{5}$.

A similar analysis for hyperbolas yields

$$b^2 = c^2 - a^2$$

= $(ea)^2 - a^2$
= $a^2(e^2 - 1)$

Hyperbola

Let *p* be the distance between the pole and the directrix.

1. Horizontal directrix above the pole: $r = \frac{ep}{1 + e \sin \theta}$ 2. Horizontal directrix below the pole: $r = \frac{ep}{1 - e \sin \theta}$ 3. Vertical directrix to the right of the pole: $r = \frac{ep}{1 + e \cos \theta}$ 4. Vertical directrix to the left of the pole: $r = \frac{ep}{1 - e \cos \theta}$

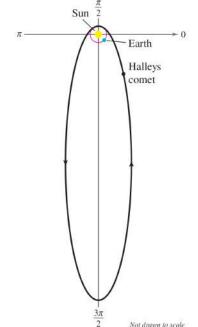
Example 4 – Halley's Comet

Halley's comet has an elliptical orbit with an eccentricity of $e \approx 0.967$. The length of the major axis of the orbit is approximately 35.88 astronomical units. Find a polar equation for the orbit. How close does Halley's comet come to the sun?

Solution:

Using a vertical major axis, as shown in Figure 9.83, choose an equation of the form

$$r = \frac{ep}{1 + e\sin\theta}.$$



Because the vertices of the ellipse occur at $\theta = \pi/2$ and $\theta = 3\pi/2$, you can determine the length of the major axis to be the sum of the *r*-values of the vertices.

That is,

$$2a = \frac{0.967p}{1+0.967} + \frac{0.967p}{1-0.967} \approx 29.79p \approx 35.88$$

So, $p \approx 1.204$ and $ep \approx (0.967)(1.204)$ ≈ 1.164 cont'd

Using this value of *ep* in the equation, you have

 $r = \frac{1.164}{1 + 0.967 \sin \theta}$

where r is measured in astronomical units.

To find the closest point to the sun (the focus), substitute $\theta = \pi/2$ into this equation to obtain

$$r = \frac{1.164}{1 + 0.967 \sin(\pi/2)}$$

 ≈ 0.59 astronomical units

 \approx 55,000,000 miles.

cont'd