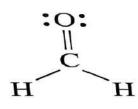
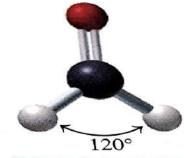

Molecular Geometry

- Valence Shell Electron Pair Repulsion Theory
- Three dimensional shapes of molecules can be predicted using Lewis structures
- Shapes are determined by considering groups of electrons around central atom, both bonded and unbonded (lone pairs)
- Electron groups are arranged to minimize the repulsion between their negative charges
- Focus on central atom, number of bonds and number of lone pairs

- Central atoms with two electron groups: minimal repulsion when electron groups are on opposite sides of central atom
- LINEAR

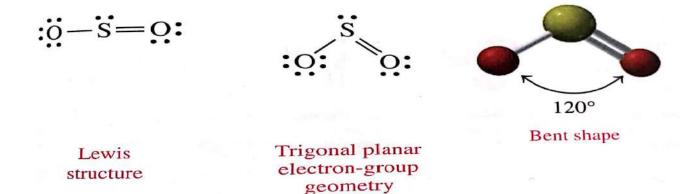


- Central atoms with three electron groups
- Example: H₂CO

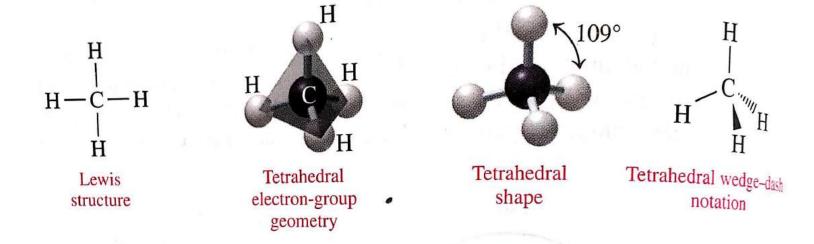

Minimal repulsion occurs when three electron groups are as far apart as possible-

TRIGONAL PLANAP

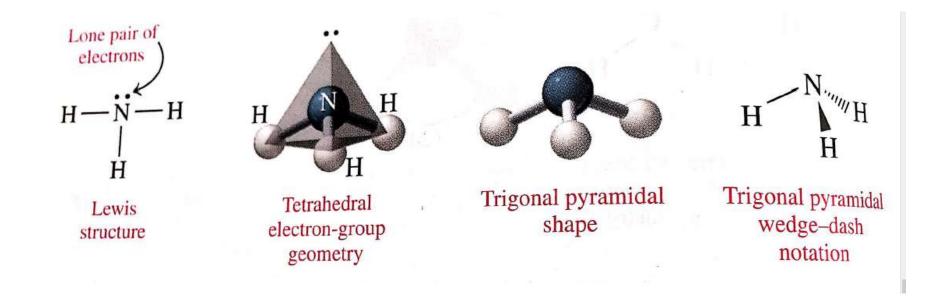
Lewis structure

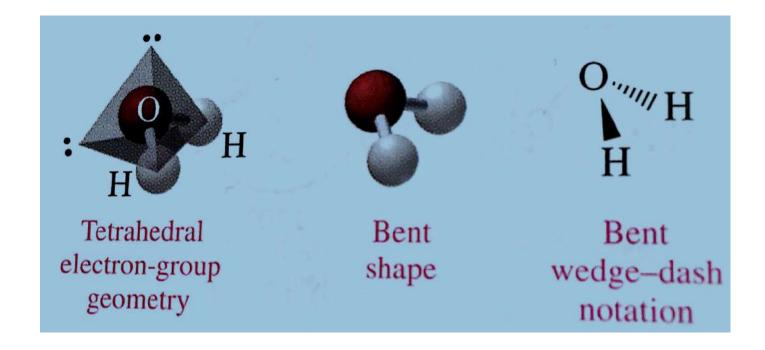


Trigonal planar electron-group geometry



Trigonal planar shape


SO₂ there are three electron groups, but one group is a lone pair, so the shape is bent


- ► Four electron groups
- When all of the electron groups are bonded, the shape is tetrahedral

Four electron groups with one lone pair- trigonal planar

Four electron groups, two lone pairs

Flectron Groups	Geometry	Bonded Atoms	tral Atom with Two, Three, and Four Bonded Atoms -					
			Lone Pairs	Bond Angle∜	Molecular Shape	Example	Three-Dimensional Model	
2	Linear	2	0	180°	Linear	CO ₂	0-0-0	
3	Trigonal planar	3	0	120°	Trigonal planar	H_2CO		
3	Trigonal planar	2	1	120°	Bent	SO ₂		
4	Tetrahedral	4	0	109°	Tetrahedral	CH ₄		
4	Tetrahedral	3	1	109°	Trigonal pyramidal	NH ₃		
4	Tetrahedral	2	2	109°	Bent	H_2O		

VSEPR Shapes

Number of Electron Pairs	Bonds	Electron Pair Arrangement	Ball-and-Stick Model	Molecular Structure	Partial Lewis Structure	Ball-and-Stick Model
2	2	Linear	: 180	Linear	А—В—А	0 0 0
3	3	Trigonal planar (triangular)	120*	Trigonal planar (triangular)	A A A	P P
4	4	Tetrahedral	109,5*	Tetrahedral	A — B — A	H H
4	3	Tetrahedral	109.5*	Trigonal pyramid	$ \begin{array}{c} A - B - A \\ A \\ A \end{array} $	H H
4	2	Tetrahedral	109.5"	Bent or V-shaped	A — B — A	HO H

Summary

- https://www.youtube.com/watch?v=KjoQHqgz da8
- https://www.youtube.com/watch?v=wYZg1j7o2 x4&ebc=ANyPxKryVMXWuhz6cg_UxEfwZHCa7yl LX5elCuThuVg2h45P6bPR-UTe_bw3tO35eWdvZu7JSpJf7TmC3o129mvZ33r3 FQ5wCA