Mathematics Preschool Learning Foundations

A Focus on the Geometry Strand

Agenda

- The relationship between the NCTM Standards, the Preschool Learning Foundations and the DRDP-R
- The Research
- Exceptional Children--Division of Early Childhood Recommended Practices
- English Learner Strategies
- Taking It Back to the Classroom

Outcomes

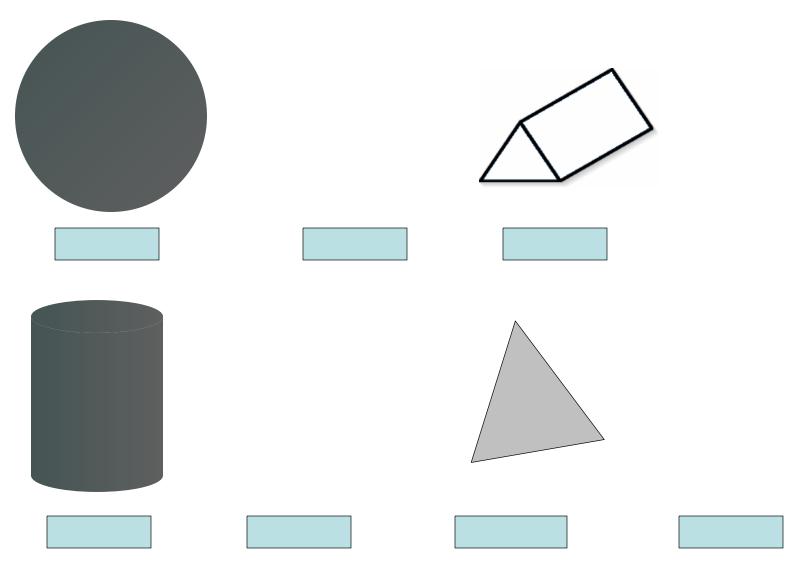
- Become familiar with the mathematics foundations with an emphasis on the Geometry strand.
- Explain how the DRDP-R and the NCTM Standards relate to the mathematics foundations.
- Discover the research behind the practice.
- Explore strategies to make geometry come to life in the classroom.
- Plan for taking it back to your classroom.

Norms

- Start on time and end on time.
- Turn cell phones off.
- Help the group stay on task.
- Listen to thoughts and ideas of others.
- Contribute your thoughts and ideas.

Parking Lot

Please write questions on post-its and place them on chart paper titled "Parking Lot."


Name That Shape

6

Squares and circles, rectangles and triangles...but do you know the name of 3-D shapes?

How many of the 3-D shapes on the next slide can your table identify?

NCTM Topics Mathematics Foundations Number and Operations - Number Sense Geometry - Algebra and Functions (Classification & Patterning) Measurement - Measurement

- Algebra
 Geometry
- Data Analysis & ______
 Probability
 Mathematical Reasoning

Peeking Inside the Mathematics Foundations

California Preschool Learning Foundations

Volume 1

CALIFORNIA DEPARTMENT OF EDUCATION . BACRAMENTO, 2008

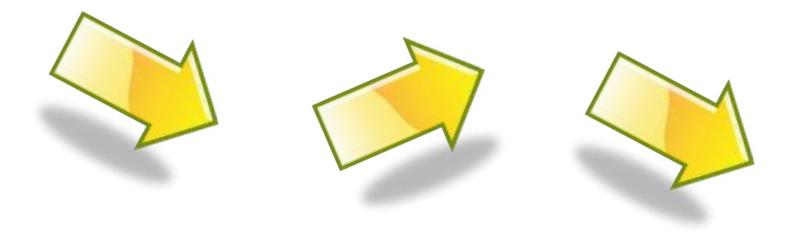
The purpose of the foundations is to promote understanding of preschool children's learning and to guide instructional practice.

11

The Foundations...

are for all children, including children learning English and children with disabilities. They describe the knowledge and skills that young children typically exhibit:

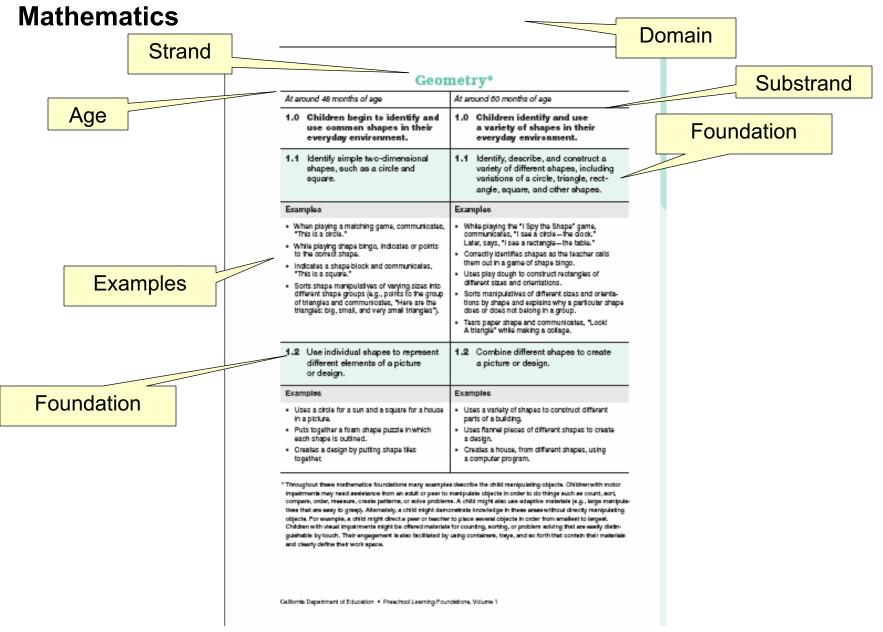
- at around 48 and 60 months of age;
- as they complete their first or second year of preschool;
- with appropriate support; and
- when attending a high-quality preschool program.

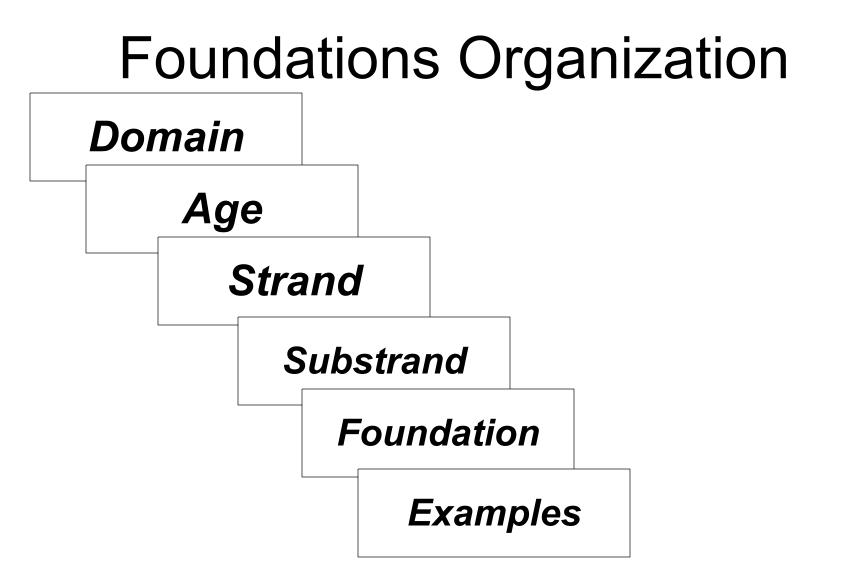

High-Quality Programs Include

- environments and experiences that encourage active, playful exploration and experimentation
- purposeful teaching to help children gain knowledge and skills
- specific support for children learning English
- specific accommodations and adaptations for children with special needs

A Guided Tour

How is the mathematics domain organized?



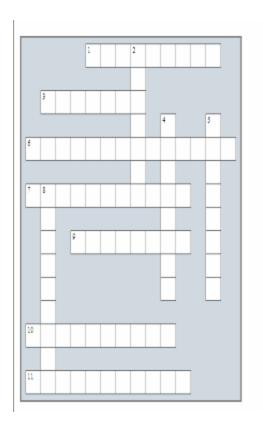

The Sections

- Introduction
- The Foundations
- Bibliographic Notes
- Glossary
- References and Source Material

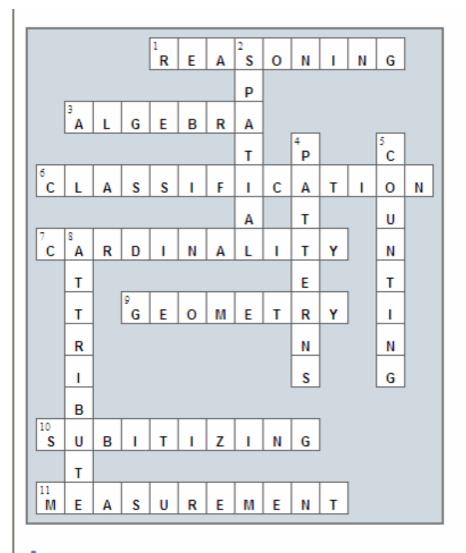
Map of the Foundations

Strand - Substrand Order

- There is a developmental progression from three- to four-years-old within a substrand.
- The order in which the strands and substrands are presented is not meant to indicate a developmental progression.



Bibliographic Notes



Ready for a Challenge?

- Can you complete this crossword puzzle?
- Answers can be found in the *Bibliographic Notes* from pages 161-166.

Answer Key

Foundations and the DRDP-R

How the Foundations and the DRDP-R Work Together

Foundations and the DRDP-R

Foundations

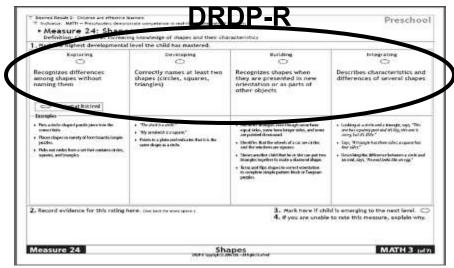
At about 48 and 60 months

A guide and teaching An assessment tool tool

DRDP-R

Developmental continuum

Foundations and the DRDP-R


Foundations

At around 48 months

1.0: Children begin to identify and use common shapes in their environment.

At around 60 months

1.0: Children identify and use a variety of shapes in their everyday environment.

Geometry

It's more than shapes!

Geometry - It's More Than Shapes

- Shapes
- Locations, Directions, and Spatial Orientation
- Visualization and Spatial Reasoning
- Transformation and Symmetry

Source: NTCM Showcasing Mathematics for the Young Child pages 56-57

California Preschool Learning Foundations

"Geometry is the study of space and shape (Clements, 1999). Geometry and spatial reasoning offer a way to describe, interpret, and imagine the world."

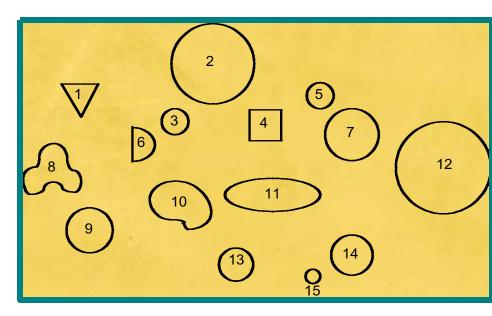
Source: Preschool Learning Foundations, Bibliographic Notes, page 164

Geometry Research

Clements, D. H., Sarama, J., & DiBiase, A.-M. (Eds.). (2003). Engaging Young Children in Mathematics: Standards for Preschool and Kindergarten Mathematics Education. Mahwah, N.J.: Lawrence Erlbaum Associates.

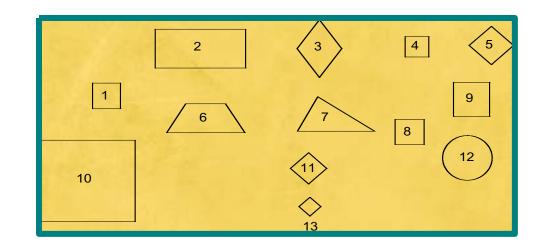
Young Children and Shape: Two Studies

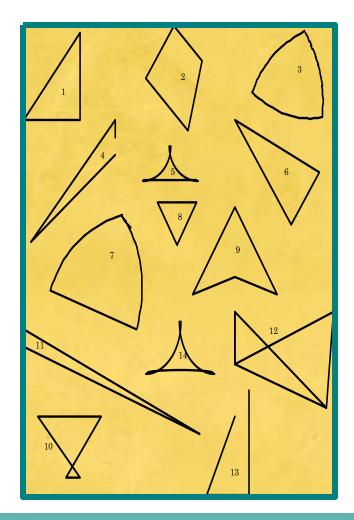
- Hundreds of children, 3 to 6 years old
- First study used same tasks as used in previous research with older students



Circles

Correctness

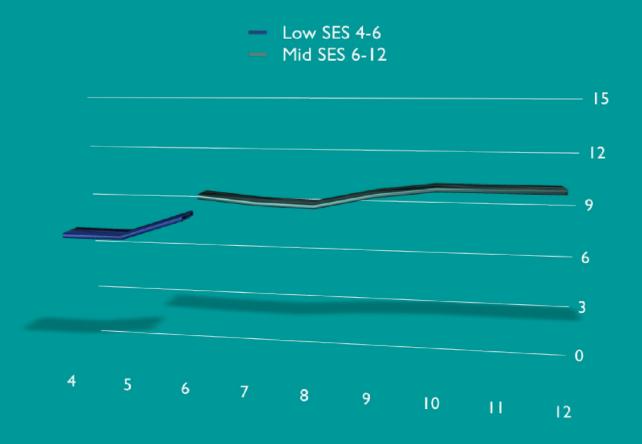

- 92% 4 year olds
- 96% 5 year olds
- 99% 6 year olds
- Few youngest chose ellipse and curved shape
- Described as "round"
- Thus, easily recognized but difficult to describe


Squares

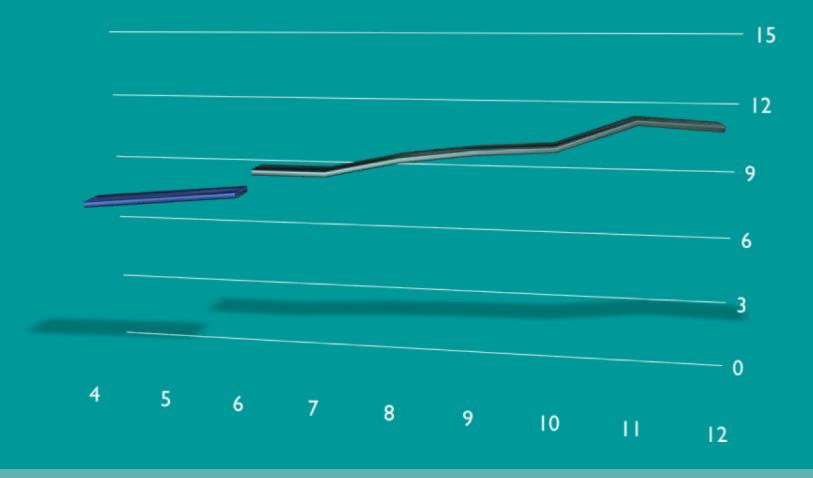
- Only slightly less accurate in identifying squares: 82%, 86%, and 91%
- Youngest lower on nonsquare rhombi but not on "tilted squares"
- Minority reasoned about properties, but was relationship between such responses and correct selections

Triangles Task

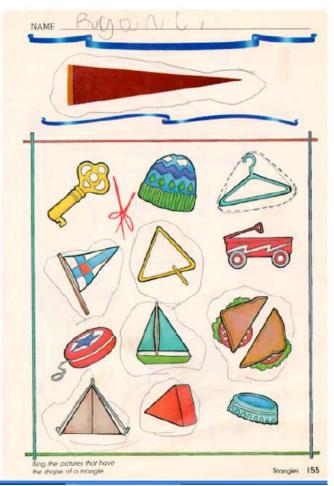
- Lower, but not low: about 60%
- Property responses present, but only 18%
- Inverse-U pattern: 5's more likely than 4's or 6's accept both non-standard triangles and those with curved sides


Rectangles

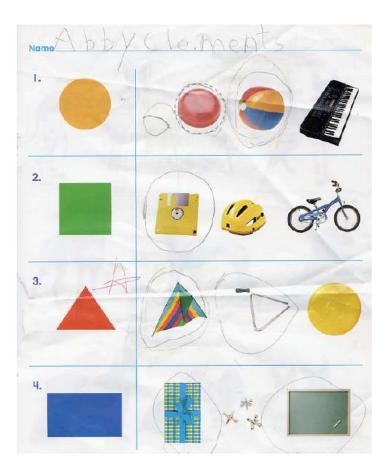
- Slightly more than 50%
- 4's were more likely to accept the squares
- All accepted "long" quads w/ pair of parallel sides #3, 6, 10, and 14
- Properties less frequently



Compare to Elementary—Rectangles


Compare to Elem.—Triangles

Low SES 4-6
Mid SES 6-12


What Children See

Ring the triangle

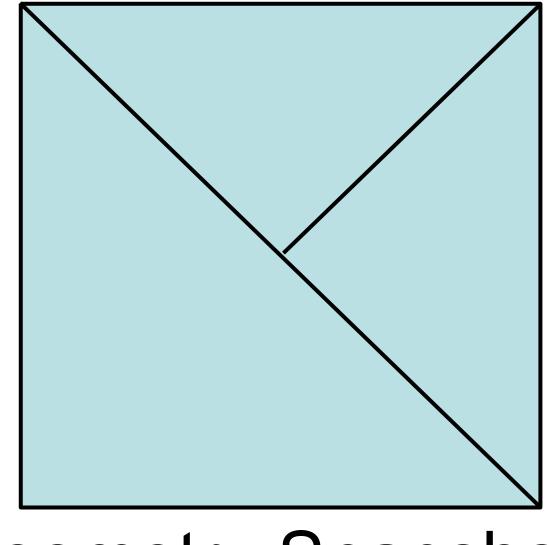
What Children See

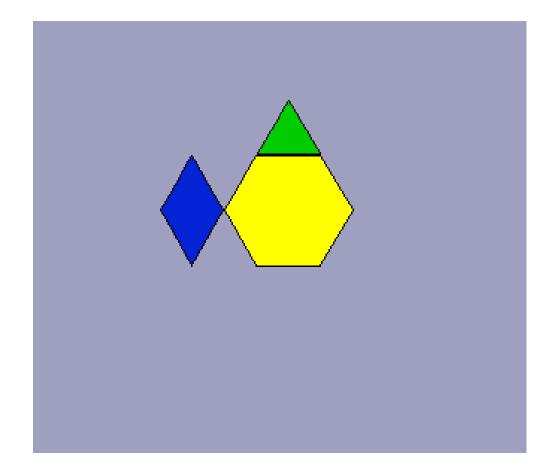
More recent, but not more mathematically precise

Geometry Must Move Beyond "Basic" Shape Naming to:

- Parts & Properties
 - Shape attributes
 - Include analysis and description
- Mental images and transformations
- Composing and decomposing

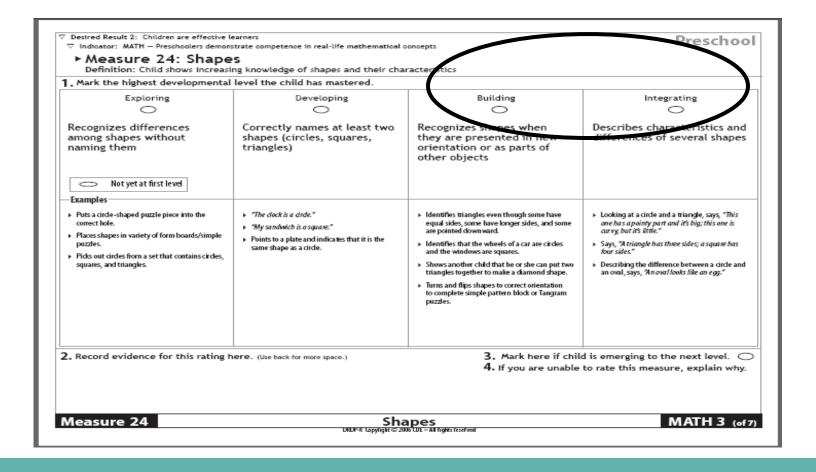
Learning Trajectory for Shapes


- Shape Matcher
- Shape Prototype Recognizer
- Shape Recognizer
- Side Recognizer
- Angle Recognizer
- Shape Class Identifier


Mark the highest developmental	level the child has mastered	1	1
Exploring	Developing	Building	Integrating
Recognizes differences mong shapes without naming them	Correctly names at least two shapes (circles, squares, triangles)	Recognizes shapes when they are presented in new orientation or as parts of other objects	Describes characteristics and differences of several shape
Not yet at first level Examples Puts a circle-shaped puzzle piece into the correct hole. Places shapes in variety of form boards/simple puzzles.	 "The clock is a circle." "My sandwich is a square." Points to a plate and indicates that it is the same shape as a circle. 	 Identifies triangles even though some have equal sides, some have longer sides, and some are pointed downward. Identifies that the wheels of a car are circles and the windows are squares. 	 Looking at a circle and a triangle, says, "This one has a pointy part and it's big; this one is carvy, but it's little." Says, "A triangle has three sides; a square has four sides."
Pidts out circles from a set that contains circles, squares, and triangles.		 Shows another child that he or she can put two triangles together to make a diamond shape. Turns and flips shapes to correct orientation to complete simple pattern block or Tangram puzzles. 	 Describing the difference between a circle an an oval, says, "An oval looks like an egg."
2, Record evidence for this rating here. (Use back for more space.)		 3. Mark here if child is emerging to the next level. 4. If you are unable to rate this measure, explain why 	

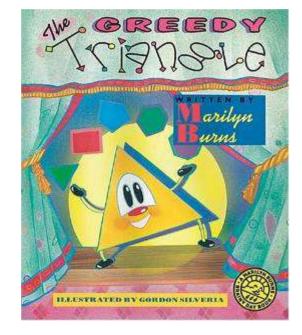
Geometry and Spatial Sense

Geometry Snapshots Ready...?

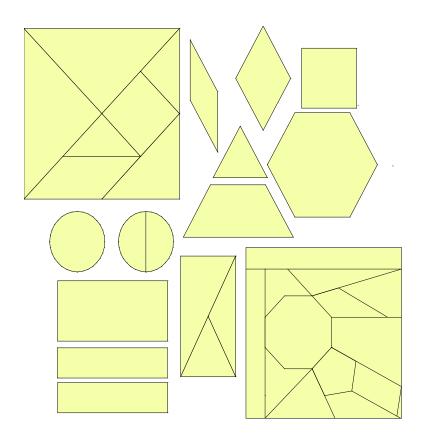

Snapshots with Pattern Blocks Ready...?

Learning Trajectory for Composing Geometric Shapes

- Pre-composer
- Picture maker
- Shape composer
- Substitution composer



DRDP-R Measure 24: Shapes Developmental Levels


Books

- Shape Flip Book!
- The Greedy Triangle
- Mirror books
- The Shape of Things
- Dot and Line

• (What other books do you know about?)

Shape Set Activity

•Designed based on research and wisdom of expert practice

•Consistency: Pattern blocks, tangrams

•Diversity: Circles and sections, different rectangles and triangles, other shapes

Clements, D. H., & Sarama, J. (2007). *Building Blocks-SRA Real Math, Grade PreK*. Columbus, OH: SRA/McGraw-Hill.

Geometry in the Classroom

Let's Play

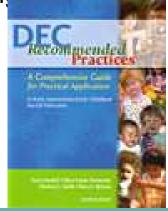
- Use the materials on your table and the direction card to play the game.
- You have 20 minutes to play the game and to identify what foundations the game addresses and what kind of documentation you might gather to demonstrate children's growth and development.
- Share your game with the group.

Let's Play

VVhich foundations are addressed in this activity?	
How might you document children's growth and development?	
How might you adapt this for children with disabilities?	
What are some strategies for EL Learners?	

Council for Exceptional Children

Division of Early Childhood (DEC) Recommended Practices



Division of Early Childhood

Practices are individualized for each child based on:

- child's current behavior and abilities across relevant domains instead of the child's diagnostic classification
- the demands, expectations, and requirements of the child's current environment
- team planning that incorporates the input of family and various providers
- staff knowledge of validated strategies including promoting and fading procedures to ensure acquisition of skills
- IEP consideration and/or requirements

DEC Recommended Practices, 2005

Division of Early Childhood

Physical space and materials are structured and adapted to promote engagement, play, interaction, and learning by attending to children's preferences, interests, using novelty, responsive toys, providing adequate amounts of materials and using defined spaces.

DEC Recommended Practices, 2005

Preschool Learning Foundations and Children with Disabilities

 Where in the Geometry strand can you find information about children with disabilities?

 What does it say about children with disabilities?

Geometry Foundations and Children with Disabilities

Children may need:

- assistance to manipulate objects
- adaptive materials that are easy to grasp
- to demonstrate knowledge in alternative ways without directly manipulating objects
- clearly defined work space
- materials that are easily distinguishable by touch

Preschool Learning Foundations, page 157

Revisit The Name Game

 What adaptations might you try to make your game more accessible to children with special needs?

 Record your ideas in the space provided.

Preschool English Learners

Walk and Talk

 Misconception: Math is about numbers, therefore, understanding the language of instruction isn't so crucial.

 Reality: Math is abstract in nature and requires specific vocabulary to talk about it!

Through using language creatively and interactively, children develop the thinking necessary to communicate mathematically to solve real problems with their everyday experience.

Scaffolding as a Strategy

When children are given opportunities to build on their existing knowledge base, words in their new language are more easily mastered because they are linked to familiar concepts.

Minor Adjustments

- Check for understanding.
- It is more than eye contact.
- Use of primary language, use of icon, use of actual object.
- Use follow-up questions.

PRINCIPLE 1

The education of English learners is enhanced when preschool programs and families form meaningful partnerships.

PRINCIPLE 2

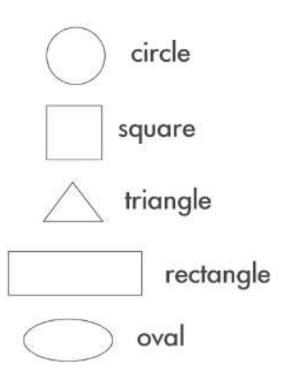
Children benefit when their teachers understand cultural differences in language use and incorporate them into the daily routine.

From Preschool English Learners - A Resource Guide, CDE Press 2007

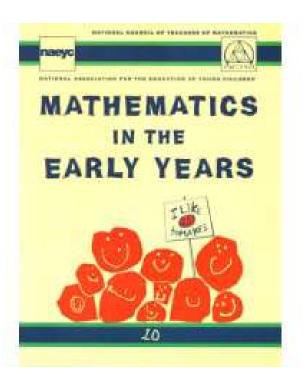
PRINCIPLE 4

Language development and learning are promoted when preschool teachers and children creatively and interactively use language.

PRINCIPLE 6


Continued use and development of the child's home language will benefit the child as he or she acquires English.

From Preschool English Learners- A Resource Guide, CDE Press 2007



Mathematical Vocabulary

- Determine the proficiency levels of each Englishlanguage learner in the classroom.
- Identify key vocabulary words and phrases to introduce and use in your lesson with English-language learners.

Nine strategies for working with English-language learners

Adapted from Mathematics in the Early Years, edited by Juanita Copley, 1999.

Strategies 1, 2, 3

- Modify language.
- Use manipulatives.
- Use modeling and gestures.

Strategies 4, 5, 6

- 4. Use oral descriptors.
- 5. Respect the observation and listening time.
- 6. Match questions to the child's proficiency level in English.

67

Strategies 7, 8, 9

- Incorporate the child's first language.
- Consider cultural issues.
- 9.Connect with parents and math in the home.

One More Time Revisit the Name Game

 How might you adapt your game for English-language learners?

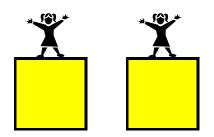
 Record your ideas in the space provided.

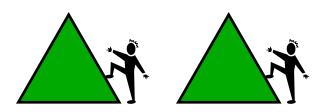
CDE Web site

- At the Web address, the underlined <u>Preschool Learning</u> <u>Foundations</u> link takes you to the publication. There you will have easy access to the chapters and sections within the 192 page publication.
- The *Appendix*, on pages 173-192, provides a summary list of the foundations.
- Frequently Asked Questions (FAQ) are posted on the website. Questions can be sent to psfoundations@cde.ca.gov

CALIFORNIA DEPARTMENT OF EDUCATION + SACRAMENTO, 2008

To Purchase


 The Preschool Learning Foundations publication is available for purchase from the CDE Press for \$19.95.


 Ordering information can be found at the CDE Web site www.cde.ca.gov or by calling 800-995-4099.

Make and Take-Shape Memory Game

- Take 12 cards
- Take 2 of each shape sticker to make matching card sets

Taking It Back to the Classroom

3.2	STRATEGIES	NOTES	IDEAS	-1
Col				

Thank you for coming

• Put your CPIN information here.

• Announce next event.

Evaluation

• Please complete your evaluation.

• Put your specific procedure here.

Optional Slides

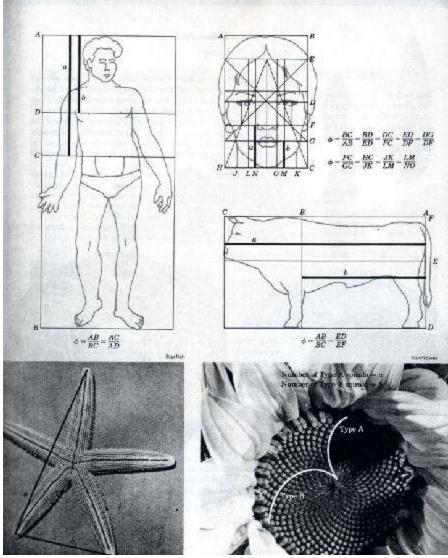
Is Mathematizing Appropriate?

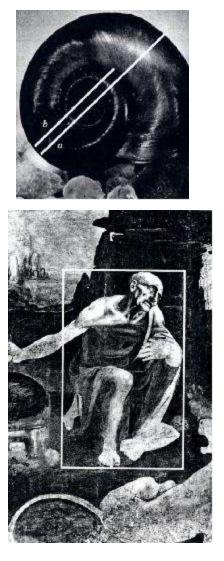
Preschool math is not recent phenomenon.

Historical pattern of appropriate, interesting mathematics from Froebel, to Montessori to today's research.

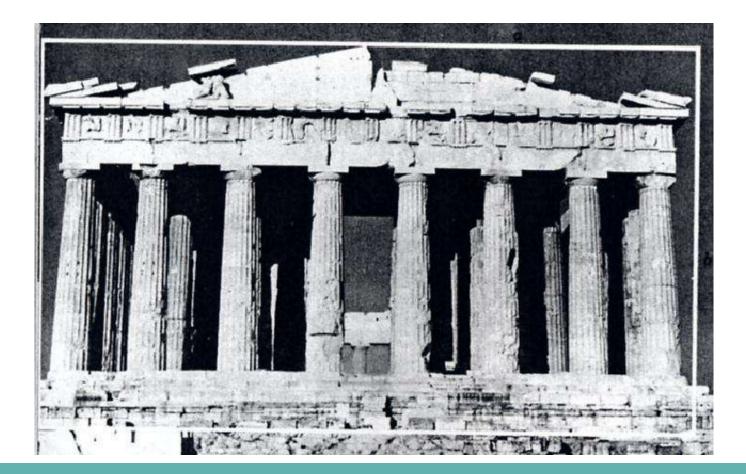
Pat H.'s preschool was studying bees.

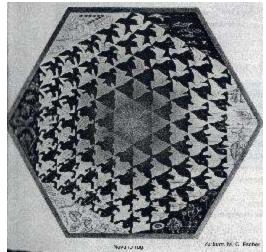
Children noticed the hexagon.

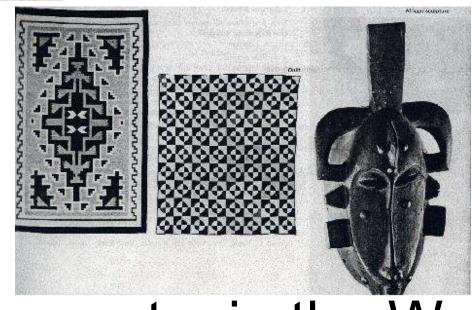

- T: Why do you think they chose?
- C1: It popped in their heads.
- C2: They found one under a tree.


Geometry in the World

Let's see some of the others...






St. Jerome, Divinci

Geometry in the World

Geometry in the World

Geometry in the World

