Geometry – Things to Remember!							
3-D Figures:	Regular Solids:	Locus Theorems: Fixed distance from point Fixed distance from a line					
Prism: $V = Bh$	Tetrahedron – 4 faces						
Pyramid: $V = \frac{1}{3}Bh$	Cube – 6 faces Octahedron – 8 faces						
Cylinder: $V = \pi r^2 h$; $SA = 2\pi rh + 2\pi r^2$	Dodecahedron – 12 faces	Equidistant from 2 points. Equidistant 2 parallel lines.					
Cone: $V = \frac{1}{3}\pi r^2 h$; $SA = s\pi r + \pi r^2$							
Sphere: $V = \frac{4}{3}\pi r^3$; $SA = 4\pi r^2 = \pi d^2$	Triangles: By Sides: Scalene – no congruent sides Isosceles – 2 congruent sides Equilateral – 3 congruent sides	Equidistant from 2 intersecting lines					
Polygon Interior/Exterior Angles: Sum of int. angles = $180(n-2)$	By Angles: Acute – all acute angles	Congruent Triangles SSS NO donkey theorem					
Each int. angle (regular) = $\frac{180(n-2)}{n}$ Sum of ext. angles = 360	Right – one right angle Obtuse – one obtuse angle Equiangular – 3 congruent angles(60°) Equilateral \leftrightarrow Equiangular	SAS (SSA or ASS) ASA AAS HL (right triangles only)					
Each ext. angle (regular) = $\frac{n}{n}$	Exterior angle of a triangle equals the	CPCTC (use after the triangles are congruent)					
Related Conditionals: Converse: switch if and then Inverse: negate if and then Contrapositive: inverse of the converse (contrapositive has the same truth value as the original statement)	sum of the 2 non-adjacent interior angles.Mid-segment of a triangle is parallel to the third side and half the length of the third side.	Inequalities: Sum of the lengths of any two sides of a triangle is greater than the length of the third side. Longest side of a triangle is opposite the largest angle. Exterior angle of a triangle is greater than either of the two non-adjacent interior angles.					
Pythagorean Theorem: $c^2 = a^2 + b^2$ Converse: If the sides of a triangle satisfy $c^2 = a^2 + b^2$ then the triangle is a right triangle.	Similar Triangles: AA SSS for similarity SAS for similarity Corresponding sides of similar triangles are in proportion.	Mean Proportional in Right Triangle: Altitude Rule: Leg Rule: part of hypaltitude hypotemmseleg, altitude other part hyp leg projection					

Parallels: If lines are parallel 1/2 3/4 5/6 7/8 Corresponding angles are equal. m<1=m<5, m<2=m<6, m<3=m<7, m<4=m<8 Alternate Interior angles are equal. m<3=m<6, m<4=m<5 Alternate Exterior angles are equal. m<1=m<8, m<2=m<7 Same side interior angles are supp. m<3+m<5=180, m<4+m<6=180 Circle Segments In a circle, a radius perpendicular to a chord bisects the chord. Intersecting Chords Rule: (segment part)•(segment part) = (segment part)•(segment part) = (whole secant)•(external part) = (tangent)^2	Quadrilaterals: Parallelogram: opp sides parallel opp sides = opp angles = consec. angles supp diag bis each other Rectangle: add 4 rt angles, diag. = Rhombus: add 4 = sides, diag. perp, diag bisect angles. Square: All from above. Circle Angles: Central angle = arc I \int_{A}^{A} Angle formed by 2 chords = half the sum of arcs	Trapezoid: Only one set parallel sides. Median of trap is parallel to both bases and = $\frac{1}{2}$ sum bases.: Isosceles Trap: legs = base angles = diagonals = opp angles supp nscribed angle = half \int_{A}^{B} s Angle formed by = half the diff	Transformations: $r_{n-ab}(x,y) = (x, -y)$ $r_{y-ab}(x,y) = (-x,y)$ $r_{y-ab}(x,y) = (-x,y)$ $r_{y-a}(x,y) = (-y,-x)$ $r_{ab}(x,y) = (-x,-y)$ $T_{ab}(x,y) = (x+a, y+b)$ $D_{b}(x,y) = (x+a, y+b)$ $D_{b}(x,y) = (-y,x)$ $R_{180^{\circ}}(x,y) = (-y,x)$ $R_{180^{\circ}}(x,y) = (-y,-x)$ arc Angle by tangent/cho	Glide reflection is composition of a reflection and a translation. Isometry – keeps length. Orientation – label order
(whole secant)•(external part) = $(tangent)^2$ Hat Rule: Two tangents are equal.	170° A	200 €		
Slopes and Equations: $m = \frac{vertical \ change}{horizontal \ change} = \frac{y_2 - y_1}{x_2 - x_1}.$ $y = mx + b \ slope-intercept$ $y - y_1 = m(x - x_1) \ point-slope$	Coordinate Geometry F Distance Formula: $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)}$ Midpoint Formula: $(x, y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$	ormulas:	Circles: Equation of circle center at or $x^2 + y^2 = r^2$ where r is the rate Equation of circle not at origin $(x-h)^2 + (y-k)^2 = r^2$ where center and r is the radius.	rigin: dius. n: (<i>h,k</i>) is the