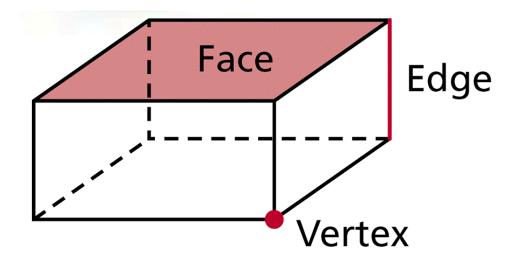
Warm Up Classify each polygon.

a polygon with three congruent sides

 equilateral triangle
 a polygon with six congruent sides and six congruent angles
 regular hexagon

3. a polygon with four sides and with opposite sides parallel and congruent

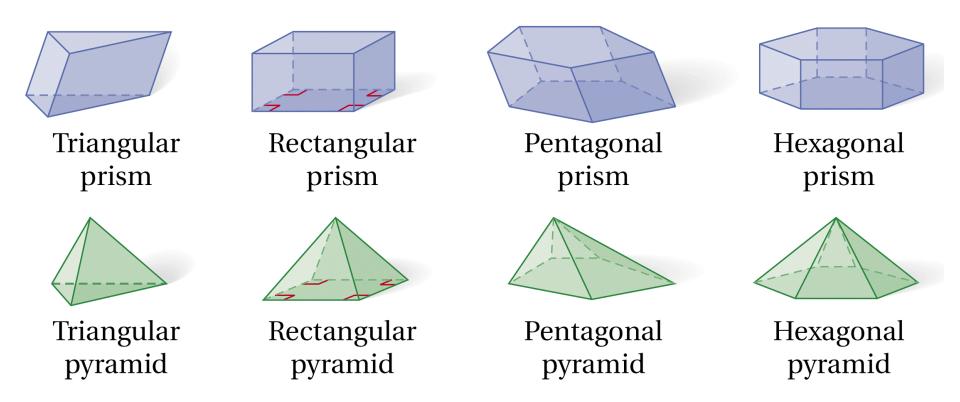
parallelogram


Objectives

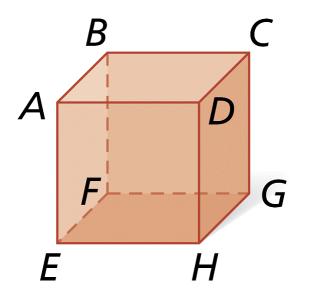
Classify three-dimensional figures according to their properties.

Use nets and cross sections to analyze three-dimensional figures.

Holt Geometry


Three-dimensional figures, or solids, can be made up of flat or curved surfaces. Each flat surface is called a <u>face</u>. An <u>edge</u> is the segment that is the intersection of two faces. A <u>vertex</u> is the point that is the intersection of three or more faces.

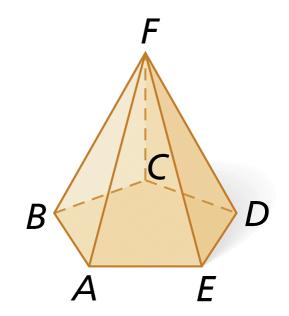
Three-Dimensional Figures


TERM	EXAMPLE
A prism is formed by two parallel congruent polygonal faces called <i>bases</i> connected by faces that are parallelograms.	Bases
A cylinder is formed by two parallel congruent circular bases and a curved surface that connects the bases.	Bases
A pyramid is formed by a polygonal base and triangular faces that meet at a common vertex.	Vertex Base
A cone is formed by a circular base and a curved surface that connects the base to a vertex.	Vertex Base

A <u>cube</u> is a prism with six square faces. Other prisms and pyramids are named for the shape of their bases.

Example 1A: Classifying Three-Dimensional Figures

Classify the figure. Name the vertices, edges, and bases.



cube

vertices: A, B, C, D, E, F, G, H edges: $\overline{AB}, \overline{BC}, \overline{CD}, \overline{DA}, \overline{EF}, \overline{FG},$ $\overline{GH}, \overline{HE}, \overline{AE}, \overline{BF}, \overline{CG}, \overline{DH}$ bases: ABCD, EFGH, ABFE, DCGH, ADHE, BCGF

Example 1B: Classifying Three-Dimensional Figures

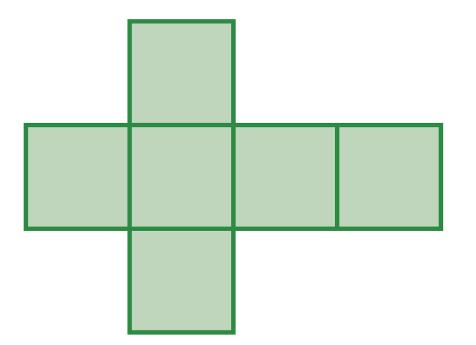
Classify the figure. Name the vertices, edges, and bases.

pentagonal pyramid vertices: A, B, C, D, E, F edges: $\overline{AB}, \overline{BC}, \overline{CD}, \overline{DE}, \overline{EA},$ $\overline{AF}, \overline{BF}, \overline{CF}, \overline{DF}, \overline{EF}$ base: ABCDE

Check It Out! Example 1a

Classify the figure. Name the vertices, edges, and bases.

cone

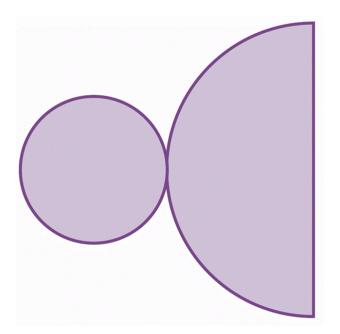

vertex: *N* edges: none base: •*M*

Holt Geometry

A <u>net</u> is a diagram of the surfaces of a three-dimensional figure that can be folded to form the three-dimensional figure. To identify a three-dimensional figure from a net, look at the number of faces and the shape of each face.

Example 2A: Identifying a Three-Dimensional Figure From a Net

Describe the three-dimensional figure that can be made from the given net.

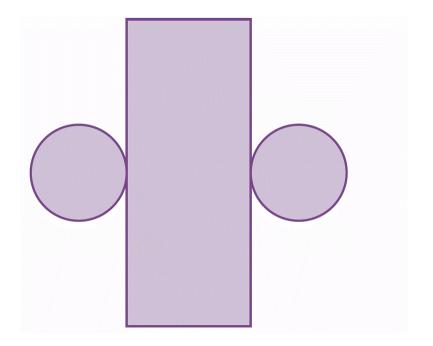


The net has six congruent square faces. So the net forms a cube.

Holt Geometry

Example 2B: Identifying a Three-Dimensional Figure From a Net

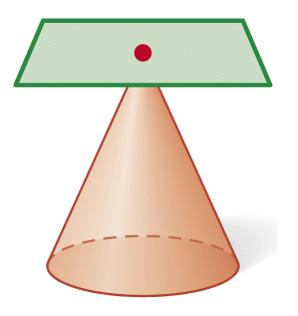
Describe the three-dimensional figure that can be made from the given net.



The net has one circular face and one semicircular face. These are the base and sloping face of a cone. So the net forms a cone.

Check It Out! Example 2b

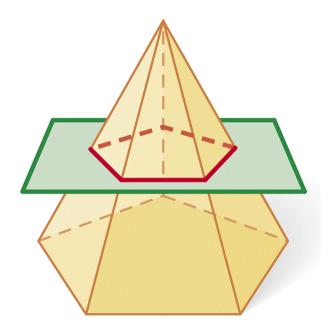
Describe the three-dimensional figure that can be made from the given net.


The net has two circular faces and one rectangular face. These are the bases and curved surface of a cylinder. So the net forms a cylinder.

A <u>cross section</u> is the intersection of a three-dimensional figure and a plane.

Example 3A: Describing Cross Sections of Three-Dimensional Figures

Describe the cross section.

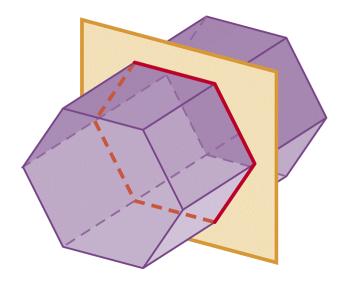


The cross section is a point.

Holt Geometry

Example 3B: Describing Cross Sections of Three-Dimensional Figures

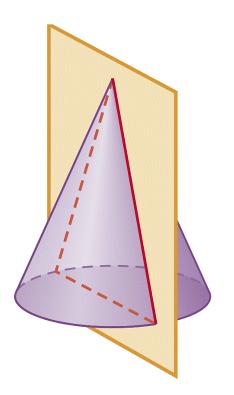
Describe the cross section.


The cross section is a pentagon.

Holt Geometry

Check It Out! Example 3a

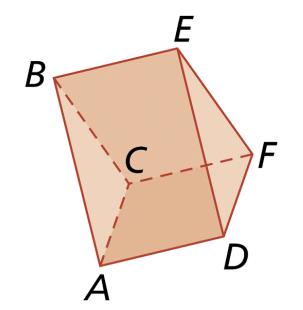
Describe the cross section.


The cross section is a hexagon.

Holt Geometry

Check It Out! Example 3b

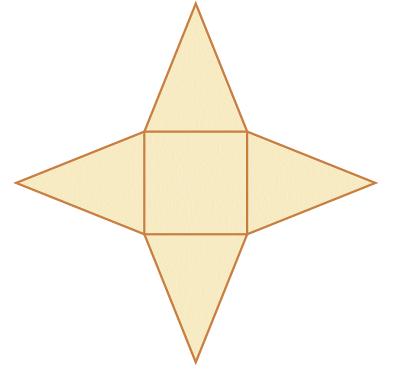
Describe the cross section.


The cross section is a triangle.

Holt Geometry

Lesson Quiz: Part I

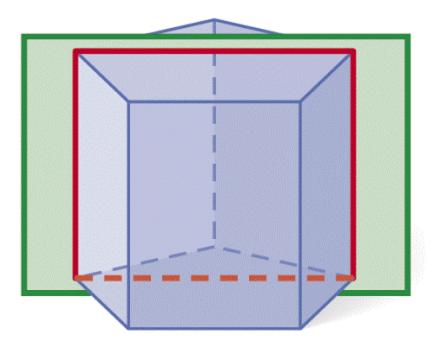
1. Classify the figure. Name the vertices, edges, and bases.


triangular prism; vertices: *A*, *B*, *C*, *D*, *E*, *F*;

edges: $\overline{AD}, \overline{CF}, \overline{BE}, \overline{FD}, \overline{EF},$ $\overline{AC}, \overline{DE}, \overline{AB}, \overline{BC}$ bases: $\triangle ABC$ and $\triangle DEF$

Lesson Quiz: Part II

2. Describe the three-dimensional figure that can be made from this net.


square pyramid

Holt Geometry

Lesson Quiz: Part III

3. Describe the cross section.

