I. Find the next four terms of each sequence and write the equation for the *n*th term.

1) 1000, 500, 250, 125, ... ____, ____, ____, ____ , _____ , _____

2) 6, 18, 54 ...

 $a_n =$

II. Given the explicit formula for the sequence, find the first five terms and the named term in the problem.

 $a_n = 10 \left(\frac{3}{4}\right)^{n-1}$

 $a_{23} =$

 $a_n = 3^{n-1}$

 $a_{18} =$ _____

III. Given the first term and the common ratio of a *geometric* sequence find the first five terms and the explicit formula.

1) $a_1 = 1$, r = 2

 $a_n =$

IV. Given a term and the common ratio of a geometric sequence find the first five terms and the explicit formula.

 $a_5 = -\frac{16}{27}, r = \frac{2}{3}$

 $a_n =$

V. Find the first five terms using the given recursive formula then write the general rule.

$$a_1 = -2$$
1) $a_{k+1} = 5a_k$,

VI. Evaluate each series.

$$\sum_{n=1}^{8} 4(5)^{n-1}$$

$$\sum_{n=1}^{\infty} 2(.5)^{n-1}$$

VII. Rewrite each series using sigma notation.

1)
$$8 + 16 + 32 + 64 + 128 + 256 + 512$$

$$2)$$
 $12 + 6 + 3 + 1.5 + .75$

VIII. Evaluate each geometric series.

$$\sum_{n=1}^{31} 2(1.2)^{n-1}$$

$$a_1 = -4$$
, $a_n = -31104$, $r = 6$