4.1

Use the figure for 1-3

12= <5 - 25=90-38

2. The measure of $\angle 1$ is 75° and the measure of $\angle 5$ is 52°. What is the measure of ∠6? <1+45+<6=180

75+52 +66 = 180 127+46=180

- 3. $\angle X$ and $\angle Y$ do not share a side. The measure of $\angle X$ is 45° and the measure of $\angle Y$ is 45°. Which of the following terms could describe $\angle X$ and $\angle Y$. Choose True or False for each term.
 - A linear
- O True False
- B vertical
- True O False
- C complementary
- True O False
- D supplementary
 - True False

For 5-6, use the figure below where $m \parallel n$

5. What is the value of x?

4. What is the value of y?

X = 125

6. What is the value of z?

4.2

Find each angle measure.

7. m_1 4

SST:

180-133=

10.
$$m\angle DEF = \frac{162}{8x - 34 = 5x + 2}$$

 $3x - 34 = 2$

3=X-7

10=X

$$A = X + 3$$
 $B = 2X - 7$
= $|0 + 3|$ = $|2(10) - 3|$

= 13

$$= 2(10) - 7$$

$$= 20 - 7$$

$$= 13$$

12. Given: $p \parallel q$

Prove: $m \angle 3 = m \angle 5$

Same-Side Interior Angles Postulate Linear Pair Theorem Given Definition of supplementary angles Substitution Property of Equality Subtraction Property of Equality

Statements	Reasons
1. <i>p</i> <i>q</i>	a. Given
2. ∠3 and ∠6 are supplementary	b. SSI Angles Postulate
3. m∠3 + m∠6 = 180°	c. Def. of Supp. L's
4. ∠5 and ∠6 are a linear pair	d. Given
5. ∠5 and ∠6 are supplementary	e. Def. of Linear Pair
6. m∠5 + m∠6 = 180°	f. Def of Supp. L's
7. $m \angle 3 + m \angle 6 = m \angle 5 + m \angle 6$	9. Substition Prop of Eq
8. m∠3 = m∠5	n. Subtraction Prop of 5

13. Use a compass and straightedge to construct a line m through P parallel to a line l.

- 14. Use the given angle relationships to decide whether the lines are parallel. Explain your reasoning.
 - a. ∠2 ≅ ∠5 b//c by the converse of SSI angles

- b. $m \angle 4 = (x + 20)^\circ$, $m \angle 8 = (2x + 5)^\circ$; and x = 15 $m \angle 4 = x + 26$ $\angle 8 = 2x + 5$ Since $\angle 4 = \angle 8$ then b / c by = 15 + 26 = 2(is) + 5 the converse of corresponding = 35 = 35 angles
- c. ∠4 ≅ ∠8

 Since ∠4 ≅ 8 than b/lc by converse of corresponding angles.
 - d. $m \ge 3 = 68^\circ$, $m \ge 7 = (5x + 3)^\circ$, x = 13 <7 = 5x + 3 Since 23 = 27 then b/c by the = 5(13) + 3 Converse of corresponding angles $= 68^\circ$

15. Construct the perpendicular bisector of \overline{AB}

Use the figure to find the following lengths.

16. Given: \overrightarrow{WY} is the perpendicular bisector of \overrightarrow{AB} .

$$a^2+b^2=c^2$$

 $a^2+18^2=27^2$
 $a^2+324=729$

$$a^2 + 324 = 729$$

 $a^2 = 405$
 $a = \sqrt{405}$

17. Given: \overline{CE} is the perpendicular bisector of \overline{FG} .

$$a^2 + 81 = 121$$

$$\begin{array}{ccc}
\sqrt{40} & a^2 = 40 \\
 & a = \sqrt{40}
\end{array}$$

18. Write the equation of a line that is perpendicular to the line y = 4x - 2 and passes through the

point (3, -1).

$$y = 4x - 2$$

 $y = 4 = -\frac{1}{4}$, (3,-1)
 $y = -\frac{1}{4} = -\frac{1}{4}$
 $y = -\frac{1}{4} = -\frac{1}{4}$
 $y = -\frac{1}{4} = -\frac{1}{4}$
 $y = -\frac{1}{4} = -\frac{1}{4}$

19. State whether each pair of lines is parallel, perpendicular, or neither.

b.
$$\frac{1}{5}x + y = 8$$
 and $y = -5x$

a. x - 2y = 12 and y = x + 5

$$y = \frac{1}{2}x - 6$$

$$y = -\frac{1}{5}x + y = 8$$

$$y = -\frac{1}{5}x + 8$$

$$y = -\frac{1}{5}x + 8$$

is is parallel, perpendicular, or neither.

$$a. x-2y=12$$
 $y=x+5$ $m=\frac{1}{2}$ $m=1$
 $-2y=-x+12$ Neither
 $y=\frac{1}{2}x-6$
 $y=\frac{1}{2}x-6$
 $y=-\frac{1}{2}x-6$
 $y=-\frac{1}{2}x-6$

20. Write the equation of a line that is parallel to y = -3x + 1 and passes through the point (9, 0)

$$y=-3x+1$$
 $\perp m=\frac{1}{3}$, $(9,0)$
 $m=-3$ $y-y_1=m(x-x_1)$
 $y-0=\frac{1}{3}(x-9)$
 $y=\frac{1}{3}x-3$

For 21-25 Write T for True or F for False. If false change the statement so that it is true.

- Using examples is an acceptable reason for proofs.
- 22. Alternate interior angles formed by parallel lines cut by a transversal are -supplementary: congruent
- 23. _____ Vertical angles are always congruent.
- 24. ____ If a point is on a perpendicular bisector, then it is equidistant from the endpoints of a segment.
- Lines that are perpendicular both have a positive slope.

opposite reciprocal

$\frac{1}{26}$ Refer to the figure. Fill in the blank with the appropriate angle:

- 26 26) $\angle 3$ and $\angle ?$ are alternate interiors $\angle s$
- 27) $\angle 2$ and $\angle ?$ are corresponding $\angle s$.
- 25 28) $\angle 4$ and $\angle ?$ are alternate exterior $\angle s$.
- 25 29) $\angle 3$ and $\angle ?$ are corresponding $\angle s$.
- 30) $\angle 1$ and $\angle ?$ are same side interior $\angle s$.
- 2 31) $\angle 4$ and $\angle ?$ are same side exterior $\angle s$.
- 2 32) $\angle 8$ and $\angle ?$ are vertical $\angle s$.
- $43 \text{ or } 4433) \angle 1 \text{ and } \angle ? \text{ are linear } \angle s.$

34. Answer the following using complete sentences and any information to defend/justify your thinking.

- a. Can either of the lines referred to in the slope criterion for perpendicular lines be vertical? Why or why not?
- b. If a linear pair of angles has equal measure, why are the angles right angles? Be specific.

 Since linear pairs sum to 180 and if those 2 pairs are congruent
 than each angle must be 90, therefore a right angle
- c. How can you determine that a statement is the converse of a theorem? Give an example.
- d. Near the end of an indirect proof, a step contradicts a known true statement. What does this mean in terms of the proof?