

MATH NEWS

Grade 4, Module 5, Topic G

4th Grade Math

Module 5: Fraction Equivalence, Ordering, and Operations

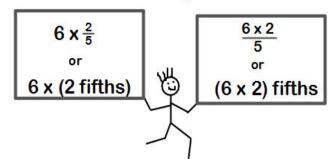
Math Parent Letter

This document is created to give parents and students a better understanding of the math concepts found in Eureka Math (© 2013 Common Core, Inc.) that is also posted as the Engage New York material which is taught in the classroom. Module 5 of Eureka Math (Engage New York) covers fraction equivalence, ordering, and operations.

Focus Area Topic G:

Repeated Addition of Fractions as Multiplication

Words to Know:


Compose -change a group of unit fractions with the same denominator to a single non-unit fraction or mixed number

Decompose - change a non-unit fraction or mixed number to the sum of its parts or unit fractions

Mixed number - number made up of a whole number and a fraction

Line plot - display of data on a number line, using an x or another mark to show frequency

Here's something to think about.

OBJECTIVES OF TOPIC G

- Represent the multiplication of n times a/b as $(n \times a)/b$ using the associative property and visual models.
- Find the product of a whole number and a mixed number using the distributive property.
- ▶ Solve multiplicative comparison word problems involving fractions.
- ▶ Solve word problems involving the multiplication of a whole number and a fraction including those involving line plots.

Focus Area Topic G:

Repeated Addition of Fractions as Multiplication

Using the Associative Property

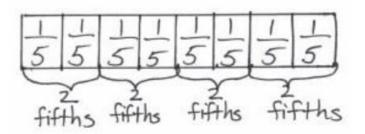
Multiplying a whole number times a fraction was introduced in Topic A. Here's an example of how a fraction can be decomposed and rewritten as a multiplication sentence.

$$\frac{3}{5} = \frac{1}{5} + \frac{1}{5} + \frac{1}{5} = 3 \times \frac{1}{5}$$

Now students will use the associative property to multiply a whole number times a mixed number.

Consider this example. $5 x \left(3 x \frac{1}{2}\right)$

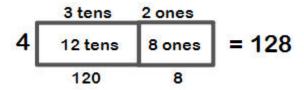
Each plate has $\frac{1}{2}$ of a cake on it. There are 3 plates on each table. There are 5 tables in the room. To find out how much cake there is, first we can think about the plates on each table and write $3x\frac{1}{2}$ which would give us the amount of cake on each table, $\frac{3}{2}$. Now, we can multiply the amount of cake on each table, $\frac{3}{2}$ by 5, the number of tables in the room. $5x\frac{3}{2}$


 $5 \times \frac{3}{2} = 5 \times (3 \text{ halves})$ (5 x 3) halves = 15 halves

15 halves = $7\frac{1}{2}$ cakes in the room

Example Problem and Answer

Draw and label a tape diagram to show the following are true. 8 fifths = $4 \times (2 \text{ fifths}) = (4 \times 2) \text{ fifths}$

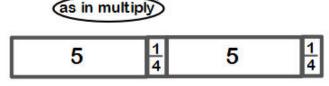

Focus Area – Topic G:

Repeated Addition of Fractions as Multiplication

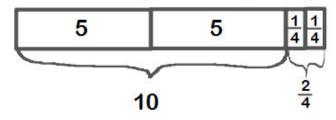
Using the Distributive Property

Students will explore the use of the distributive property to multiply a whole number by a mixed number. We can use the distributive property to show 4×32 as $(4 \times 3 \text{ tens}) + (4 \times 2 \text{ ones})$. The following area model uses the distributive property.

Students begin to see the multiplication of each part of a mixed number by the whole number and use the appropriate strategies to do so.

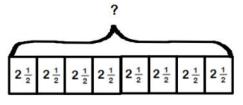

In the following example, we use a tape diagram.

Let's say we want to multiply $2 \times 5 \frac{1}{4}$.


We can create a tape diagram to show $5 + \frac{1}{4}$.

Since we are multiplying by 2, we will draw our tape diagram 2 times.

We rearrange the parts of our tape diagram to show our wholes together and our parts together.



Therefore $2 \times 5 \frac{1}{4} = (2 \times 5) + (2 \times \frac{1}{4}) = 10 \frac{2}{4}$

Module 5: Fraction Equivalence, Ordering, and Operations

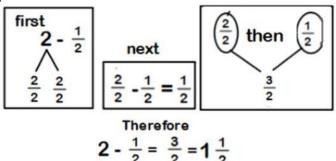
Example Problems and Answers

A grocery store had a sale on rice. Eight families each bought $2\frac{1}{2}$ pounds of rice. How many pounds of rice did the store sell to these families?

$$8 \times 2\frac{1}{2} = (8 \times 2) + (8 \times \frac{1}{2})$$

= $16 + \frac{8}{2}$
= $16 + 4$
= 20 The store sold 20 pounds of rice to these families.

Understanding Line Plots


A line plot is a graph that shows frequency of data along a number line.

This chart shows the heigth in cm of 8 plants.

Plant	Heigth in cm	
Α	2	The line plot below shows the number of plants that grew a certain amount of cm. Each x represents a plant. The number on the number line represents the amount of cm the plant grew. X X X X X X X X X X X X X
В	2	
С	1 2	
D	1	
Е	2	
F	1 1 2	
G	1	
н	2	$0 \frac{1}{2} 1 1\frac{1}{2} 2$

Example Problems and Answers

What is the difference in growth of the tallest and shortest plant?

