

A Story of Units

Pleasanton Mathematics Curriculum

Grade 4 • MODULE 3

Multi-Digit Multiplication and Division

Homework

Video tutorials: http://embarc.online Info for parents: http://bit.ly/pusdmath

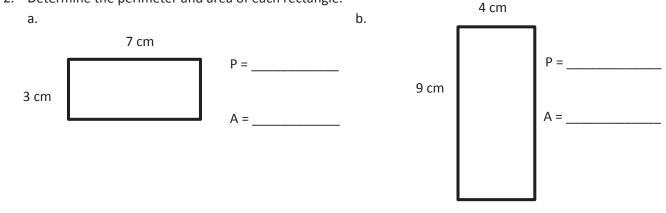
Version 3

Table of Contents GRADE 4 • MODULE 3

Multi-Digit Multiplication and Division

Module	Overview	. 2
Topic A:	Multiplicative Comparison Word Problems	15
Topic B:	Multiplication by 10, 100, and 1,000	62
Topic C:	Multiplication of up to Four Digits by Single-Digit Numbers 1	.01
Topic D:	Multiplication Word Problems1	.66
Mid-Mo	dule Assessment and Rubric1	.91
Topic E:	Division of Tens and Ones with Successive Remainders	:02
Topic F:	Reasoning with Divisibility	09
Topic G:	Division of Thousands, Hundreds, Tens, and Ones	56
Topic H:	Multiplication of Two-Digit by Two-Digit Numbers 4	⊦66
End-of-N	Jodule Assessment and Rubric 5	27
Answer	Кеу 5	39

Investigate and use the formulas for area and perimeter of rectangles.


A STORY OF UNITS

1.	Determine the p	perimeter	and area	of rectangles A and B.	
----	-----------------	-----------	----------	------------------------	--

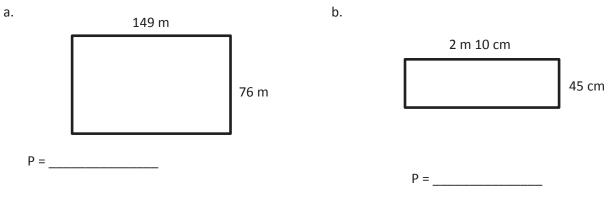
Name _____

2.	Determine the	perimeter and	area of each	rectangle.
<u> </u>	Determine the	permiteter ana		i cottangici

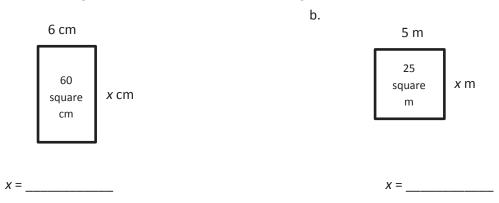
Lesson 1:

				A										
											В			
		-												
a.	A = _				_					A	=			

b. P = _____ P = _____



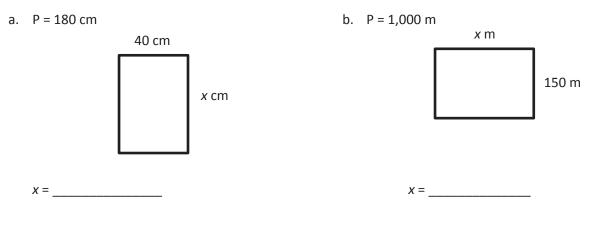
4

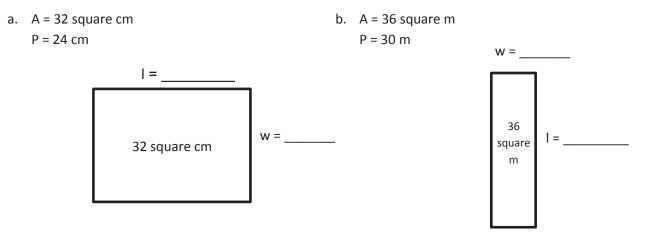

Lesson 1 Homework 4•3

Date _____

3. Determine the perimeter of each rectangle.

4. Given the rectangle's area, find the unknown side length.

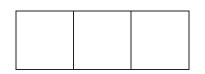



a.

Lesson 1: Investigate and use the formulas for area and perimeter of rectangles.

5. Given the rectangle's perimeter, find the unknown side length.

6. Each of the following rectangles has whole number side lengths. Given the area and perimeter, find the length and width.



Name _____

Date _____

- 1. A rectangular pool is 7 feet wide. It is 3 times as long as it is wide.
 - a. Label the diagram with the dimensions of the pool.

b. Find the perimeter of the pool.

- 2. A poster is 3 inches long. It is 4 times as wide as it is long.
 - a. Draw a diagram of the poster, and label its dimensions.

b. Find the perimeter and area of the poster.

- 3. The area of a rectangle is 36 square centimeters, and its length is 9 centimeters.
 - a. What is the width of the rectangle?

b. Elsa wants to draw a second rectangle that is the same length but is 3 times as wide. Draw and label Elsa's second rectangle.

c. What is the perimeter of Elsa's second rectangle?

- 4. The area of Nathan's bedroom rug is 15 square feet. The longer side measures 5 feet. His living room rug is twice as long and twice as wide as the bedroom rug.
 - a. Draw and label a diagram of Nathan's bedroom rug. What is its perimeter?
- b. Draw and label a diagram of Nathan's living room rug. What is its perimeter?

c. What is the relationship between the two perimeters?

d. Find the area of the living room rug using the formula $A = I \times w$.

Lesson 2: Solve multiplicative comparison word problems by applying the area and perimeter formulas.

e. The living room rug has an area that is how many times that of the bedroom rug?

f. Compare how the perimeter changed with how the area changed between the two rugs. Explain what you notice using words, pictures, or numbers.

Name _____

Date _____

Solve the following problems. Use pictures, numbers, or words to show your work.

1. Katie cut out a rectangular piece of wrapping paper that was 2 times as long and 3 times as wide as the box that she was wrapping. The box was 5 inches long and 4 inches wide. What is the perimeter of the wrapping paper that Katie cut?

2. Alexis has a rectangular piece of red paper that is 4 centimeters wide. Its length is twice its width. She glues a rectangular piece of blue paper on top of the red piece measuring 3 centimeters by 7 centimeters. How many square centimeters of red paper will be visible on top?

3. Brinn's rectangular kitchen has an area of 81 square feet. The kitchen is 9 times as many square feet as Brinn's pantry. If the rectangular pantry is 3 feet wide, what is the length of the pantry?

4. The length of Marshall's rectangular poster is 2 times its width. If the perimeter is 24 inches, what is the area of the poster?

Name		Date		
Example: $5 \times 10 = 50$ $5 \text{ ones } \times 10 = 5 \text{ tens}$	thousands	hundreds	tens	ones
Draw place value disks and arrows as shown 1. 7 × 100 =	to represent each produc	ct.	tens	ones
7 × 10 × 10 =				
7 ones × 100 =				
2. 7 × 1,000 =	thousands	hundreds	tens	ones

	thousands	hundreds	tens	ones
7 × 10 × 10 × 10 =				
7 ones × 1,000 =				

3. Fill in the blanks in the following equations.

a. 8 × 10 =	b×8 = 800	c. 8,000 =× 1,000
d. 10 × 3 =	e. 3 × = 3,000	f × 3 = 300
g. 1,000 × 4 =	h = 10 × 4	i. 400 =× 100

Lesson 4:

Interpret and represent patterns when multiplying by 10, 100, and 1,000 in arrays and numerically.

Draw place value disks and arrows to represent each product.

4. 15 × 10 = _____

(1 ten 5 ones) × 10 = _____

thousands	hundreds	tens	ones

5. 17 × 100 = _____

17 × 10 × 10 = _____

(1 ten 7 ones) × 100 = _____

thousands	hundreds	tens	ones

6.	36 × 1,000 =	ten thousands	thousands	hundreds	tens	ones
	36 × 10 × 10 × 10 =					
	(3 tens 6 ones) × 1,000 =					

Decompose each multiple of 10, 100, or 1000 before multiplying.

7.	2 × 80 = 2 × 8 ×	8. 2 × 400 = 2 × ×
	= 16 ×	= ×
	=	=
9.	5 × 5,000 = × ×	10. 7 × 6,000 = × ×
	= ×	= ×
	=	=

Lesson 4: Interpret and represent patterns when multiplying by 10, 100, and 1,000 in arrays and numerically.

 Name
 Date

Draw place value disks to represent the value of the following expressions.

1. 5 × 2 = _____

5 times _____ ones is _____ ones.

ti	thousands	hundreds	tens	ones	
					2
2. 5 × 20 =					× 5

5 times ______ tens is ______.

thousands	hundreds	tens	ones		20
				×	5

3. 5 × 200 = _____

5 times ______ is ______.

thousands	hundreds	tens	ones		200
				×	5

4. 5 × 2,000 = _____

_____ times ______ is ______.

thousands	hundreds	tens	ones	:	2,000
				×	5

Lesson 5: Multiply multiples of 10, 100, and 1,000 by single digits, recognizing patterns.

5. Find the product.

a.	20 × 9	b. 6×70	c. 7 × 700	d. 3 × 900
e.	9 × 90	f. 40 × 7	g. 600 × 6	h. 8 × 6,000
i.	5 × 70	j. 5 × 80	k. 5 × 200	l. 6,000 × 5

6. At the school cafeteria, each student who orders lunch gets 6 chicken nuggets. The cafeteria staff prepares enough for 300 kids. How many chicken nuggets does the cafeteria staff prepare altogether?

7. Jaelynn has 30 times as many stickers as her brother. Her brother has 8 stickers. How many stickers does Jaelynn have?

8. The flower shop has 40 times as many flowers in one cooler as Julia has in her bouquet. The cooler has 120 flowers. How many flowers are in Julia's bouquet?

Name	Date	

Represent the following problem by drawing disks in the place value chart.

1. To solve 30×60 , think

(3 tens × 6) × 10 = _____ 30 × (6 × 10) = _____ 30 × 60 = _____

2. Draw an area model to represent 30×60 .

3 tens × 6 tens = _____ ____

3. Draw an area model to represent 20×20 .

2 t	ens ×	2	tens	=		

20 × 20 = _____

4. Draw an area model to represent 40×60 .

4 tens × 6 tens = _____ ____

40 × 60 = _____

Rewrite each equation in unit form and solve.

5. 50 × 20 = _____

6. 30 × 50 = _____

5 tens × 2 tens = ____ hundreds

3 tens × 5 _____ = ____ hundreds

7. 60 × 20 = _____

8. 40 × 70 = _____

_____ tens × _____ tens = 12 _____

_____ × ____ = ____ hundreds

Lesson 6: Multiply two-digit multiples of 10 by two-digit multiples of 10 with the area model.

9. There are 60 seconds in a minute and 60 minutes in an hour. How many seconds are in one hour?

10. To print a comic book, 50 pieces of paper are needed. How many pieces of paper are needed to print 40 comic books?

Name _____ Date _____

- 1. Represent the following expressions with disks, regrouping as necessary, writing a matching expression, and recording the partial products vertically.
 - a. 3×24

tens	ones

b. 3 × 42

tens	ones
	tens

c. 4 × 34

tens	ones
	tens

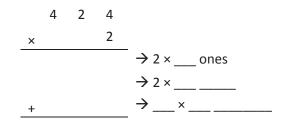
- 2. Represent the following expressions with disks, regrouping as necessary. To the right, record the partial products vertically.
 - a. 4×27

hundreds	tens	ones

b. 5 × 42

hundreds	tens	ones

3. Cindy says she found a shortcut for doing multiplication problems. When she multiplies 3 × 24, she says, "3 × 4 is 12 ones, or 1 ten and 2 ones. Then, there's just 2 tens left in 24, so add it up, and you get 3 tens and 2 ones." Do you think Cindy's shortcut works? Explain your thinking in words, and justify your response using a model or partial products.



Name _____

Date _____

- 1. Represent the following expressions with disks, regrouping as necessary, writing a matching expression, and recording the partial products vertically as shown below.
 - a. 2×424

hundreds	tens	ones
••••	• •	••••

2 × _____ + 2 × ____ + 2 × ____ ones

b. 3 × 424

hundreds	tens	ones

c. 4 × 1,424

Lesson 8:

 Extend the use of place value disks to represent three- and four-digit by one-digit multiplication. Represent the following expressions with disks, using either method shown in class, regrouping as necessary. To the right, record the partial products vertically.
 a. 2 × 617

b. 5×642

c. 3 × 3,034

Lesson 8:

Extend the use of place value disks to represent three- and four-digit by one-digit multiplication.

- 3. Every day, Penelope jogs three laps around the playground to keep in shape. The playground is rectangular with a width of 163 m and a length of 320 m.
 - a. Find the total amount of meters in one lap.

b. Determine how many meters Penelope jogs in three laps.

3: Extend the use of place value disks to represent three- and four-digit by one-digit multiplication.

Name _____

Date _____

1. Solve using each method.

Par	tial Products	Standard Algorithm
a.	4 6	4 6
	x 2	<u>× 2</u>

Pa	artial Products	Standard Algorithm
b.	3 1 5	3 1 5
	× 4	<u>× 4</u>

2. Solve using the standard algorithm.

a.	2 3 2	b. <u>1 4 2</u>	c. 3 1 4
	<u>× 4</u>	<u>× 6</u>	<u>× 7</u>
d.	4 4 0	e. 5 0 7	f. 3 8 4
	× 3	<u>× 8</u>	× 9

Lesson 9:

: Multiply three- and four-digit numbers by one-digit numbers applying the standard algorithm.

3. What is the product of 8 and 54?

4. Isabel earned 350 points while she was playing Blasting Robot. Isabel's mom earned 3 times as many points as Isabel. How many points did Isabel's mom earn?

5. To get enough money to go on a field trip, every student in a club has to raise \$53 by selling chocolate bars. There are 9 students in the club. How much money does the club need to raise to go on the field trip?

D: Multiply three- and four-digit numbers by one-digit numbers applying the standard algorithm.

6. Mr. Meyers wants to order 4 tablets for his classroom. Each tablet costs \$329. How much will all four tablets cost?

7. Amaya read 64 pages last week. Amaya's older brother, Rogelio, read twice as many pages in the same amount of time. Their big sister, Elianna, is in high school and read 4 times as many pages as Rogelio did. How many pages did Elianna read last week?

O: Multiply three- and four-digit numbers by one-digit numbers applying the standard algorithm.

Name _____

Date _____

1. Solve using the standard algorithm.

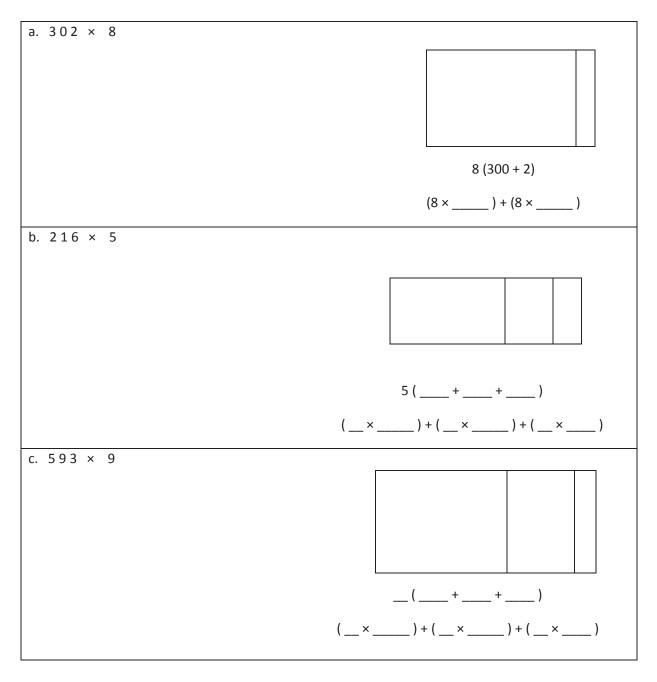
a. 3×41	b. 9×41
c. 7×143	d. 7×286
e. 4×2,048	f. 4 × 4,096
	h 40.402
g. 8 × 4,096	h. 4×8,192

Lesson 10:

10: Objective: Multiply three- and four-digit numbers by one-digit numbers applying the standard algorithm.

2. Robert's family brings six gallons of water for the players on the football team. If one gallon of water contains 128 fluid ounces, how many fluid ounces are in six gallons?

3. It takes 687 Earth days for the planet Mars to revolve around the sun once. How many Earth days does it take Mars to revolve around the sun four times?


4. Tammy buys a 4-gigabyte memory card for her camera. Dijonea buys a memory card with twice as much storage as Tammy's. One gigabyte is 1,024 megabytes. How many megabytes of storage does Dijonea have on her memory card?

Name _____

Date _____

1. Solve the following expressions using the standard algorithm, the partial products method, and the area model.

Lesson 11:

1: Connect the area model and the partial products method to the standard algorithm.

2. Solve using the partial products method.

On Monday, 475 people visited the museum. On Saturday, there were 4 times as many visitors as there were on Monday. How many people visited the museum on Saturday?

3. Model with a tape diagram and solve.

6 times as much as 384

Solve using the standard algorithm, the area model, the distributive property, or the partial products method.

4. 6,253 × 3

5. 7 times as many as 3,073

6. A cafeteria makes 2,516 pounds of white rice and 608 pounds of brown rice every month. After 6 months, how many pounds of rice does the cafeteria make?

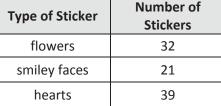
Solve two-step word problems, including multiplicative comparison.

A STORY OF UNITS

Use the RDW process to solve the following problems.

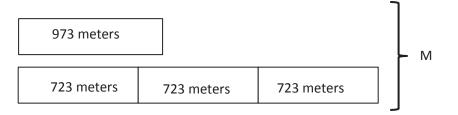
Name _____

- 1. The table shows the number of stickers of various types in Chrissy's new sticker book. Chrissy's six friends each own the same sticker book. How many stickers do Chrissy and her six friends have altogether?
 - smiley faces 21 hearts 39


Date _____

2. The small copier makes 437 copies each day. The large copier makes 4 times as many copies each day. How many copies does the large copier make each week?

3. Jared sold 194 Boy Scout chocolate bars. Matthew sold three times as many as Jared. Gary sold 297 fewer than Matthew. How many bars did Gary sell?


Lesson 12:

Lesson 12 Homework 4•3

65

4. a. Write an equation that would allow someone to find the value of M.

b. Write your own word problem to correspond to the tape diagram, and then solve.

Name _____

Date _____

Solve using the RDW process.

1. A pair of jeans costs \$89. A jean jacket costs twice as much. What is the total cost of a jean jacket and 4 pairs of jeans?

Sarah bought a shirt on sale for \$35. The original price of the shirt was 3 times that amount. Sarah also bought a pair of shoes on sale for \$28. The original price of the shoes was 5 times that amount. Together, how much money did the shirt and shoes cost before they went on sale?

3. All 3,000 seats in a theater are being replaced. So far, 5 sections of 136 seats and a sixth section containing 348 seats have been replaced. How many more seats do they still need to replace?

4. Computer Depot sold 762 reams of paper. Paper Palace sold 3 times as much paper as Computer Depot and 143 reams more than Office Supply Central. How many reams of paper were sold by all three stores combined?

Date _____

Use the RDW process to solve the following problems.

1. Linda makes booklets using 2 sheets of paper. She has 17 sheets of paper. How many of these booklets can she make? Will she have any extra paper? How many sheets?

2. Linda uses thread to sew the booklets together. She cuts 6 inches of thread for each booklet. How many booklets can she stitch with 50 inches of thread? Will she have any unused thread after stitching up the booklets? If so, how much?

3. Ms. Rochelle wants to put her 29 students into groups of 6. How many groups of 6 can she make? If she puts any remaining students in a smaller group, how many students will be in that group?

4. A trainer gives his horse, Caballo, 7 gallons of water every day from a 57-gallon container. How many days will Caballo receive his full portion of water from the container? On which number day will the trainer need to refill the container of water?

5. Meliza has 43 toy soldiers. She lines them up in rows of 5 to fight imaginary zombies. How many of these rows can she make? After making as many rows of 5 as she can, she puts the remaining soldiers in the last row. How many soldiers are in that row?

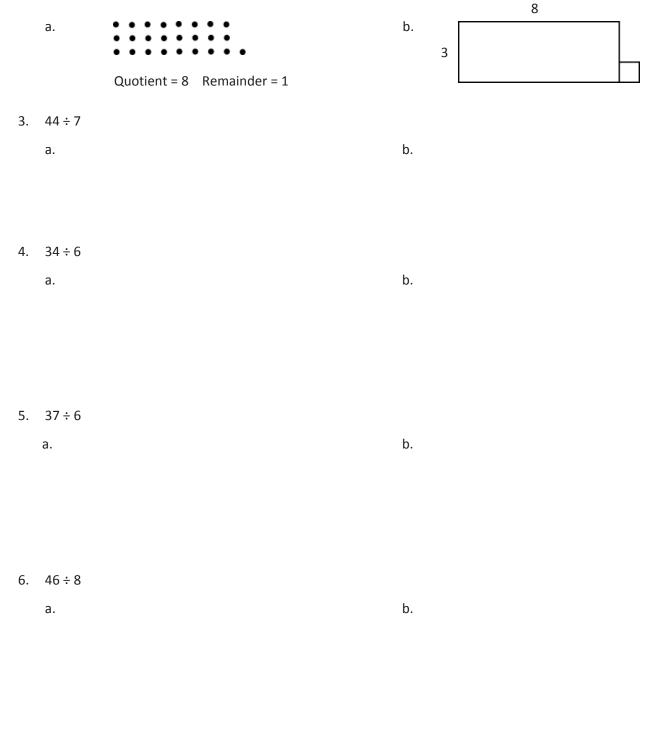
6. Seventy-eight students are separated into groups of 8 for a field trip. How many groups are there? The remaining students form a smaller group of how many students?

A STORY OF UNITS

Name _____

Date _____

Show division using an array.			Sh	ow	div	visio	on เ	ısin	ig a	n a	rea	ma	ode	I.		
1. 24÷4																
															\neg	
		_												_	\neg	
		\neg												\neg	\neg	
															\neg	
															\neg	
															┨	
Quotient =																
	Can y	/ou	sh	ow	24	÷4	wit	h o	ne	rec	tan	gle	?			
Remainder =																
2. 25÷4																
2. 25 - 4															_	
		-												-	\neg	
		\neg												\neg	\neg	
		\neg													\neg	
															\neg	
Quotient =			_		_								_			
	Can y Expla															
Remainder =	Exhig		101	v y	Jus	5110\	wet	וו ג	610	em	a1110	Jer				


Lesson 15:

Understand and solve division problems with a remainder using the array and area models.

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org G4-M3-SE-13.0-06.2015

Solve using an array and area model. The first one is done for you.

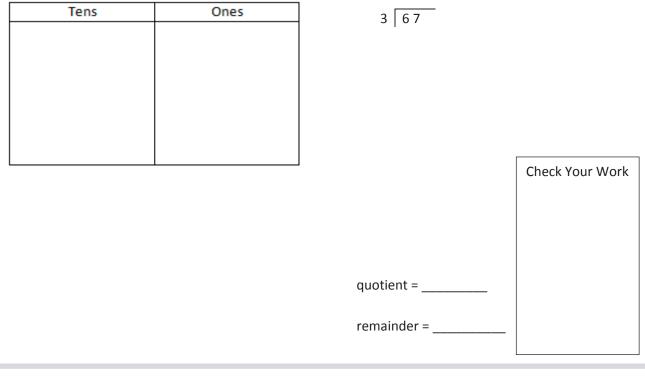
Example:	25 ÷ 3	

Lesson 15: Understand and solve division problems with a remainder using the array and area models.

A STORY OF UNITS

Date _____

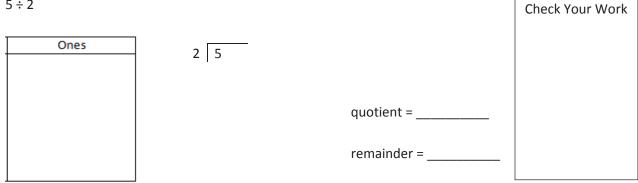
Show the division using disks. Relate your work on the place value chart to long division. Check your quotient and remainder by using multiplication and addition.


 1. 7÷3
 Check Your Work

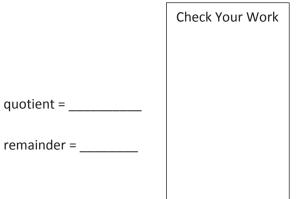
 Ones
 3 7

 quotient = _____
 2

 x 3
 remainder = _____

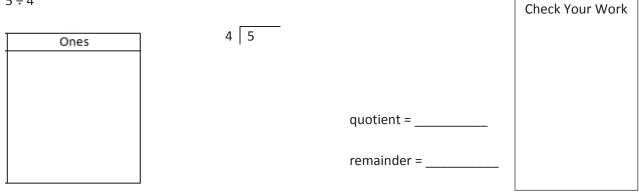

2. 67÷3

Lesson 16: Understand and solve two-digit dividend division problems with a remainder in the ones place by using place value disks.

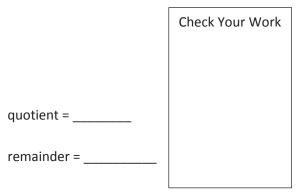

3. 5÷2

4. 85÷2

Tens	Ones



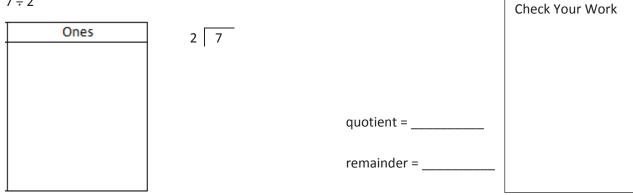
Lesson 16:


16: Understand and solve two-digit dividend division problems with a remainder in the ones place by using place value disks. 5. 5÷4

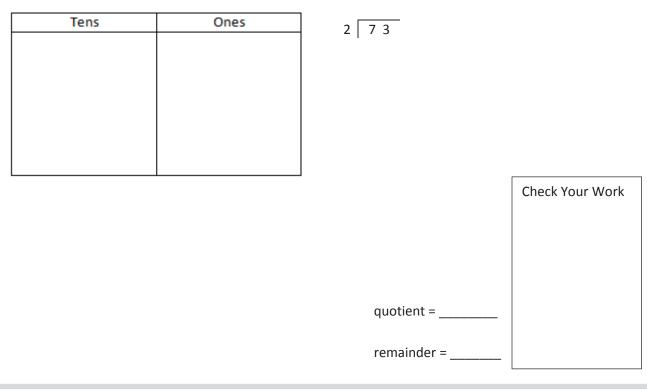
6. 85 ÷ 4

Tens	Ones

4 8 5

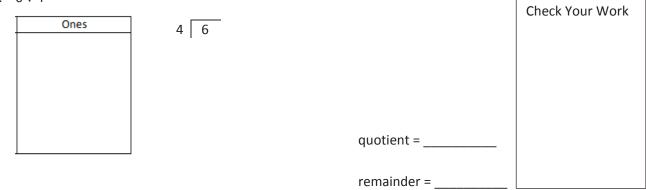

Lesson 16:

6: Understand and solve two-digit dividend division problems with a remainder in the ones place by using place value disks.

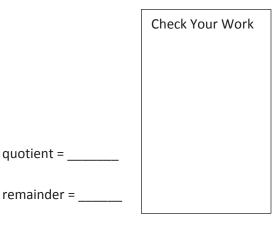

Date _____

Show the division using disks. Relate your model to long division. Check your quotient and remainder by using multiplication and addition.

1. 7÷2

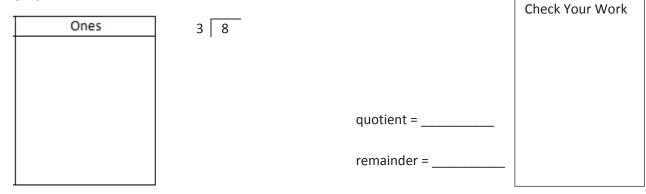


2. 73÷2

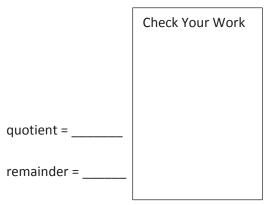

Lesson 17: Represent and solve division problems requiring decomposing a remainder in the tens.

3. 6÷4

4. 62 ÷ 4


Tens	Ones	4 6 2

Lesson 17: Represent and solve division problems requiring decomposing a remainder in the tens.


5. 8÷3

3 8 4

6. 84÷3

Tens	Ones	

Lesson 17: Represent and solve division problems requiring decomposing a remainder in the tens.

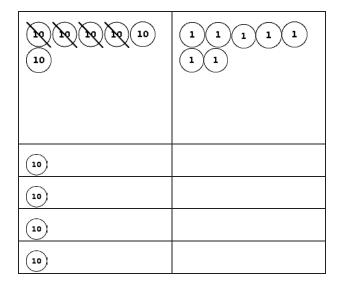
Date _____

Solve using the standard algorithm. Check your quotient and remainder by using multiplication and addition.

1. 84÷2	2. 84÷4
3. 48÷3	4. 80÷5
5. 79÷5	6. 91÷4

7. 91÷6	8. 91÷7
9. 87÷3	10. 87÷6
11. 94÷8	12. 94÷6

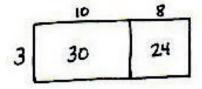
Α	ST	0	RY	OF	UN	ITS
~	.	~		<u> </u>	0.14	


 Name
 Date

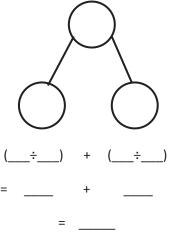
1. When you divide 86 by 4, there is a remainder of 2. Model this problem with place value disks. In the place value disk model, how can you see that there is a remainder?

2. Francine says that $86 \div 4$ is 20 with a remainder of 6. She reasons this is correct because $(4 \times 20) + 6 = 86$. What mistake has Francine made? Explain how she can correct her work.

The place value disk model is showing 67 ÷ 4.
 Complete the model. Explain what happens to the 2 tens that are remaining in the tens column.


- 4. Two friends share 76 blueberries.
 - a. To count the blueberries, they put them into small bowls of 10 blueberries. Draw a picture to show how the blueberries can be shared equally. Will they have to split apart any of the bowls of 10 blueberries when they share them?

b. Explain how the friends can share the blueberries fairly.



Date _____

- 1. Maria solved a division problem by drawing an area model.
 - a. Look at the area model. What division problem did Maria solve?

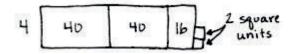
b. Show a number bond to represent Maria's area model. Start with the total, and then show how the total is split into two parts. Below the two parts, represent the total length using the distributive property, and then solve.

2. Solve 42 ÷ 3 using an area model. Draw a number bond, and use the distributive property to solve for the unknown length.

3. Solve 60 ÷ 4 using an area model. Draw a number bond to show how you partitioned the area, and represent the division with a written method.

4. Solve 72 ÷ 4 using an area model. Explain, using words, pictures, or numbers, the connection of the distributive property to the area model.

5. Solve 96 ÷ 6 using an area model and the standard algorithm.



Name	Date	

1. Solve 35 ÷ 2 using an area model. Use long division and the distributive property to record your work.

2. Solve 79 ÷ 3 using an area model. Use long division and the distributive property to record your work.

3. Paulina solved the following division problem by drawing an area model.

- a. What division problem did she solve?
- b. Show how Paulina's model can be represented using the distributive property.

Solve the following problems using the area model. Support the area model with long division or the distributive property.

4. 42÷3	5. 43÷3
6. 52 ÷ 4	7. 54÷4
8. 61÷5	9. 73÷3

10. Ninety-seven lunch trays were placed equally in 4 stacks. How many lunch trays were in each stack? How many lunch trays will be left over?

Lesson 21: Solve division problems with remainders using the area model.

Name

Date _____

1. Record the factors of the given numbers as multiplication sentences and as a list in order from least to greatest. Classify each as prime (P) or composite (C). The first problem is done for you.

	Multiplication Sentences	Factors	P or C
a.	8	The factors of 8 are:	С
	1 × 4 = 8 2 × 4 = 8	1, 2, 4, 8	
b.	10	The factors of 10 are:	
с.	11	The factors of 11 are:	
d.	14	The factors of 14 are:	
e.	17	The factors of 17 are:	
f.	20	The factors of 20 are:	
g.	22	The factors of 22 are:	
h.	23	The factors of 23 are:	
i.	25	The factors of 25 are:	
j.	26	The factors of 26 are:	
k.	27	The factors of 27 are:	
Ι.	28	The factors of 28 are:	

2. Find all factors for the following numbers, and classify each number as prime or composite. Explain your classification of each as prime or composite.

Factor Pairs for 19	Factor Pairs for 21	Factor Pairs for 24		

- 3. Bryan says that only even numbers are composite.
 - a. List all of the odd numbers less than 20 in numerical order.
 - b. Use your list to show that Bryan's claim is false.
- 4. Julie has 27 grapes to divide evenly among 3 friends. She thinks there will be no leftovers. Use what you know about factor pairs to explain whether or not Julie is correct.

1. Explain your thinking or use division to answer the following.

a. Is 2 a factor of 72?	b. Is 2 a factor of 73?
c. Is 3 a factor of 72?	d. Is 2 a factor of 60?
e. Is 6 a factor of 72?	f. Is 4 a factor of 60?
g. Is 5 a factor of 72?	h. Is 8 a factor of 60?

2. Use the associative property to find more factors of 12 and 30.

a. 12 = 6 × 2	b. 30 = × 5
= (× 2) × 2	= (× 3) × 5
= × (2 × 2)	= × (3 × 5)
= ×	= × 15
=	=

3. In class, we used the associative property to show that when 6 is a factor, then 2 and 3 are factors, because $6 = 2 \times 3$. Use the fact that $10 = 5 \times 2$ to show that 2 and 5 are factors of 70, 80, and 90.

4. The first statement is false. The second statement is true. Explain why, using words, pictures, or numbers.

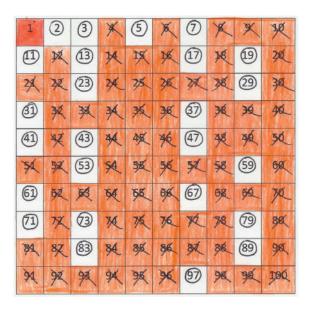
If a number has 2 and 6 as factors, then it has 12 as a factor. If a number has 12 as a factor, then both 2 and 6 are factors.

Name	Date	

- 1. For each of the following, time yourself for 1 minute. See how many multiples you can write.
 - a. Write the multiples of 5 starting from 75.
 - b. Write the multiples of 4 starting from 40.
 - c. Write the multiples of 6 starting from 24.
- 2. List the numbers that have 30 as a multiple.
- 3. Use mental math, division, or the associative property to solve. (Use scratch paper if you like.)
 - a. Is 12 a multiple of 3? _____ Is 3 a factor of 12? _____
 - b. Is 48 a multiple of 8? _____ Is 48 a factor of 8? _____
 - c. Is 56 a multiple of 6? _____ Is 6 a factor of 56? _____
- 4. Can a prime number be a multiple of any other number except itself? Explain why or why not.

5. Follow the directions below.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100


- a. Underline the multiples of 6. When a number is a multiple of 6, what are the possible values for the ones digit?
- b. Draw a square around the multiples of 4. Look at the multiples of 4 that have an odd number in the tens place. What values do they have in the ones place?
- c. Look at the multiples of 4 that have an even number in the tens place. What values do they have in the ones place? Do you think this pattern would continue with multiples of 4 that are larger than 100?
- d. Circle the multiples of 9. Choose one. What do you notice about the sum of the digits? Choose another one. What do you notice about the sum of the digits?

Name

Date

 A student used the sieve of Eratosthenes to find all prime numbers less than 100. Create a step-by-step set of directions to show how it was completed. Use the word bank to help guide your thinking as you write the directions. Some words may be used just once, more than once, or not at all.

w	ord Bank
composite	cross out
number	shade
circle	х
multiple	prime

Directions for completing the sieve of Eratosthenes activity:

2. What do all of the numbers that are crossed out have in common?

3. What do all of the circled numbers have in common?

4. There is one number that is neither crossed out nor circled. Why is it treated differently?

Name		Date
1. Dr	raw place value disks to represe	nt the following problems. Rewrite each in unit form and solve.
a.	6÷3 =	1 1 1 1 1 1 1
	6 ones ÷ 3 =ones	
b.	60 ÷ 3 =	
	6 tens ÷ 3 =	
c.	600 ÷ 3 =	
		÷3 =
d.	6,000 ÷ 3 =	
		÷ 3 =
2. Dr	aw place value disks to represe	nt each problem. Rewrite each in unit form and solve.
a.	12 ÷ 4 =	
	12 ones ÷ 4 =ones	
b.	120 ÷ 4 =	
		÷4 =
c.	1,200 ÷ 4 =	
		÷4 =
EUR MA1		ivide multiples of 10, 100, and 1,000 by single-digit numbers. 129

3. Solve for the quotient. Rewrite each in unit form.

a.	800 ÷ 4 = 200	b. 900 ÷ 3 =	c. 400 ÷ 2 =	d. 300 ÷ 3 =
	8 hundreds ÷ 4 = 2 hundreds			
e.	200 ÷ 4 =	f. 160 ÷ 2 =	g. 400 ÷ 5 =	h. 300 ÷ 5 =
	20 tens ÷ 4 = tens			
i.	1,200 ÷ 3 =	j. 1,600 ÷ 4 =	k. 2,400 ÷ 4 =	l. 3,000 ÷ 5 =
	12 hundreds ÷ 3 = hundreds			

4. A fleet of 5 fire engines carries a total of 20,000 liters of water. If each truck holds the same amount of water, how many liters of water does each truck carry?

5. Jamie drank 4 times as much juice as Brodie. Jamie drank 280 milliliters of juice. How much juice did Brodie drink?

6. A diner sold \$2,400 worth of French fries in June, which was 4 times as much as was sold in May. How many dollars' worth of French fries were sold at the diner in May?

Date _____

1. Divide. Use place value disks to model each problem.

a. 346÷2 b. 528÷2

Lesson 27:

: Represent and solve division problems with up to a three-digit dividend numerically and with place value disks requiring decomposing a remainder in the hundreds place.

с.	516÷3			
Ь	729 ÷ 3			
d.	729÷3			
d.	729 ÷ 3			
d.	729 ÷ 3			
d.	729 ÷ 3			
d.	729 ÷ 3			
d.	729 ÷ 3			
d.	729÷3			

 Represent and solve division problems with up to a three-digit dividend numerically and with place value disks requiring decomposing a remainder in the hundreds place. 2. Model using place value disks, and record using the algorithm.

a.	648 ÷ 4 Disks	Algorithm
b.	755 ÷ 5 Disks	Algorithm
c.	964÷4 Disks	Algorithm

Lesson 27:

 Represent and solve division problems with up to a three-digit dividend numerically and with place value disks requiring decomposing a remainder in the hundreds place.

Date _____

1. Divide. Check your work by multiplying. Draw disks on a place value chart as needed.

a. 378÷2 b. 795÷3 c. 512÷4

Lesson 28:

Represent and solve three-digit dividend division with divisors of 2, 3, 4, and 5 numerically.

d.	d. 492÷4		
e.	e. 539÷3		
f.	f. 862÷5		

Lesson 28:

3: Represent and solve three-digit dividend division with divisors of 2, 3, 4, and 5 numerically.

g.	g. 498÷3	
h.	h. 783÷5	
i.	i. 621÷4	

Lesson 28:

3: Represent and solve three-digit dividend division with divisors of 2, 3, 4, and 5 numerically.

j. 531÷4

2. Selena's dog completed an obstacle course that was 932 meters long. There were 4 parts to the course, all equal in length. How long was 1 part of the course?

8: Represent and solve three-digit dividend division with divisors of 2, 3, 4, and 5 numerically.

A STORY OF UN

Date _____

1. Divide, and then check using multiplication.

a. 2,464÷4		
h 1949 · 2		
b. 1,848÷3		
c. 9,426 ÷ 3		

9: Represent numerically four-digit dividend division with divisors of 2, 3, 4, and 5, decomposing a remainder up to three times.

d. 6,587÷2			
e. 5,445÷3			
(E 425 + 2	 	 	
f. 5,425÷2			

Lesson 29:

19: Represent numerically four-digit dividend division with divisors of 2, 3, 4, and 5, decomposing a remainder up to three times.

g. 8,	167÷3	
h. 8.	56÷3	
i. 4,	937÷4	

9: Represent numerically four-digit dividend division with divisors of 2, 3, 4, and 5, decomposing a remainder up to three times.

j. 6,173÷5

2. A truck has 4 crates of apples. Each crate has an equal number of apples. Altogether, the truck is carrying 1,728 apples. How many apples are in 3 crates?

Date _____

Divide. Check your solutions by multiplying.

1. 409÷5

2. 503 ÷ 2

3. 831÷4

4. 602 ÷ 3

Lesson 30: Solve division problems with a zero in the dividend or with a zero in the quotient.

5. 720÷3

6. 6,250 ÷ 5

7. 2,060 ÷ 5

8. 9,031÷2

Lesson 30:

30: Solve division problems with a zero in the dividend or with a zero in the quotient.

9. 6,218÷4

10. 8,000 ÷ 4

Lesson 30:

Solve division problems with a zero in the dividend or with a zero in

Date _____

Solve the following problems. Draw tape diagrams to help you solve. Identify if the group size or the number of groups is unknown.

1. 500 milliliters of juice was shared equally by 4 children. How many milliliters of juice did each child get?

2. Kelly separated 618 cookies into baggies. Each baggie contained 3 cookies. How many baggies of cookies did Kelly make?

3. Jeff biked the same distance each day for 5 days. If he traveled 350 miles altogether, how many miles did he travel each day?

4. A piece of ribbon 876 inches long was cut by a machine into 4-inch long strips to be made into bows. How many strips were cut?

5. Five Martians equally share 1,940 Groblarx fruits. How many Groblarx fruits will 3 of the Martians receive?

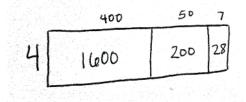
Date _____

Solve the following problems. Draw tape diagrams to help you solve. If there is a remainder, shade in a small portion of the tape diagram to represent that portion of the whole.

1. Meneca bought a package of 435 party favors to give to the guests at her birthday party. She calculated that she could give 9 party favors to each guest. How many guests is she expecting?

2. 4,000 pencils were donated to an elementary school. If 8 classrooms shared the pencils equally, how many pencils did each class receive?

3. 2,008 kilograms of potatoes were packed into sacks weighing 8 kilograms each. How many sacks were packed?


4. A baker made 7 batches of muffins. There was a total of 252 muffins. If there was the same number of muffins in each batch, how many muffins were in a batch?

5. Samantha ran 3,003 meters in 7 days. If she ran the same distance each day, how far did Samantha run in 3 days?

Name	Date	

1. Arabelle solved the following division problem by drawing an area model.

- a. What division problem did she solve?
- b. Show a number bond to represent Arabelle's area model, and represent the total length using the distributive property.

2. a. Solve $816 \div 4$ using the area model. There is no remainder in this problem.

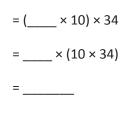
b. Draw a number bond and use a written method to record your work from Part (a).

3. a. Draw an area model to solve $549 \div 3$.

- b. Draw a number bond to represent this problem.
- c. Record your work using the long division algorithm.

4. a. Draw an area model to solve $2,762 \div 2$.

- b. Draw a number bond to represent this problem.
- c. Record your work using the long division algorithm.



Lesson 33:

33: Explain the connection of the area model of division to the long division algorithm for three and four digit dividends.

Date _____

- 1. Use the associative property to rewrite each expression. Solve using disks, and then complete the number sentences.
 - a. 20 × 34

hundreds	tens	ones

b. 30 × 34

= (3 × 10) × _____ = 3 × (10 × ____) = _____

thousands	hundreds	tens	ones

c. 30 × 42

= (3 × ____) × _____ = 3 × (10 × _____)

= _____

3 × (10 × ____)

thousands	hundreds	tens	ones

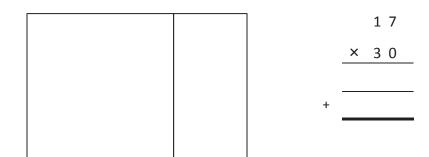
Lesson 34:

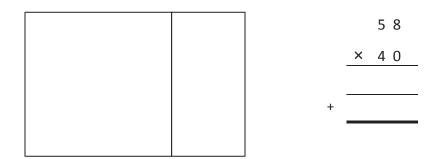
4: Multiply two-digit multiples of 10 by two-digit numbers using a place value chart.

- 2. Use the associative property and place value disks to solve.
 - a. 20 × 16 b. 40 × 32

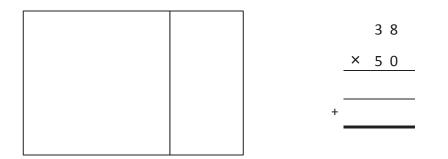
- 3. Use the associative property without place value disks to solve.
 - a. 30 × 21 b. 60 × 42

- 4. Use the distributive property to solve the following. Distribute the second factor.
 - a. 40 × 43


b. 70 × 23


Date _____

Use an area model to represent the following expressions. Then, record the partial products and solve.


1. 30 × 17

2. 40 × 58

3. 50 × 38

Lesson 35: Multiply two-digit multiples of 10 by two-digit numbers using the area model.

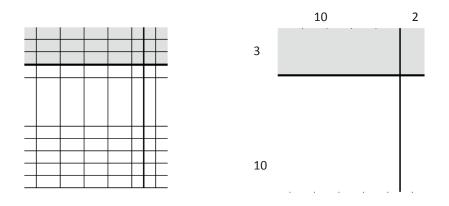
Draw an area model to represent the following expressions. Then, record the partial products vertically and solve.

4. 60 × 19

5. 20 × 44

Visualize the area model, and solve the following expressions numerically.

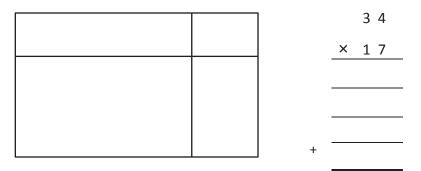
6. 20 × 88 7. 30 × 88


8. 70 × 47

9. 80 × 65

Date _____

1. a. In each of the two models pictured below, write the expressions that determine the area of each of the four smaller rectangles.



b. Using the distributive property, rewrite the area of the large rectangle as the sum of the areas of the four smaller rectangles. Express first in number form, and then read in unit form.

 $13 \times 12 = (3 \times __) + (3 \times __) + (10 \times __) + (10 \times __)$

Use an area model to represent the following expression. Record the partial products and solve.

2. 17 × 34

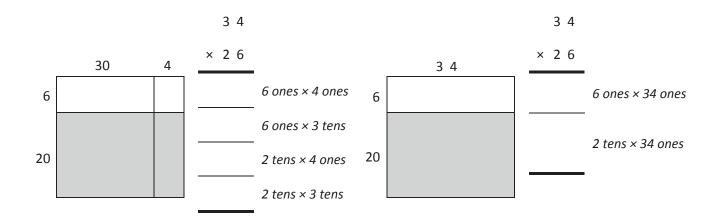
Draw an area model to represent the following expressions. Record the partial products vertically and solve.

3. 45 × 18

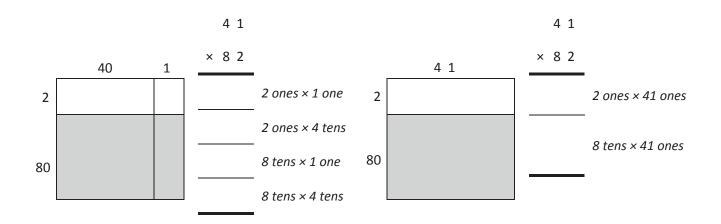
4. 45 × 19

Visualize the area model and solve the following numerically using four partial products. (You may sketch an area model if it helps.)

5. 12 × 47 6. 23 × 93


7. 23×11

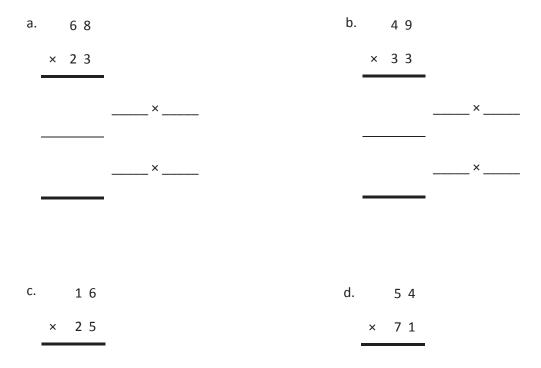
8. 23 × 22



Name _____ Date _____

1. Solve 26 × 34 using 4 partial products and 2 partial products. Remember to think in terms of units as you solve. Write an expression to find the area of each smaller rectangle in the area model.

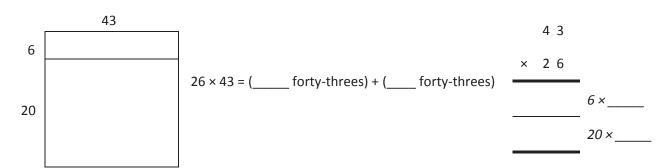
2. Solve using 4 partial products and 2 partial products. Remember to think in terms of units as you solve. Write an expression to find the area of each smaller rectangle in the area model.

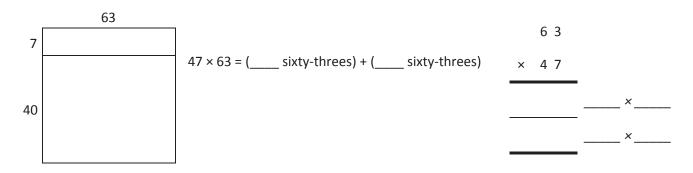


Lesson 37: Transition from four partial products to the standard algorithm for two-digit by two digit multiplication.

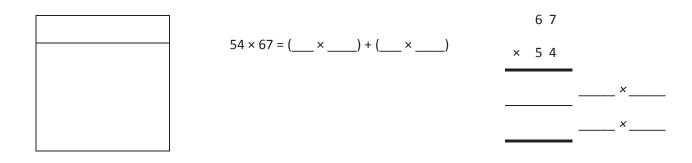
3. Solve 52 × 26 using 2 partial products and an area model. Match each partial product to its area on the model.

4. Solve the following using 2 partial products. Visualize the area model to help you.

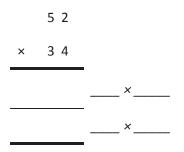


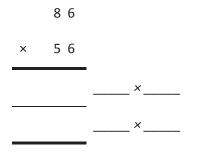

Lesson 37: Transition from four partial products to the standard algorithm for two-digit by two digit multiplication.

Name _____ Date _____


1. Express 26 × 43 as two partial products using the distributive property. Solve.

2. Express 47 × 63 as two partial products using the distributive property. Solve.


3. Express 54×67 as two partial products using the distributive property. Solve.



Lesson 38: Transition from four partial products to the standard algorithm for two-digit by two digit multiplication.

4. Solve the following using two partial products.

5. Solve using the multiplication algorithm.

6. 54 × 52

7. 44 × 76

Lesson 38:

18: Transition from four partial products to the standard algorithm for two-digit by two digit multiplication.

8. 63 × 63

9. 68 × 79

Lesson 38:

38: Transition from four partial products to the standard algorithm for two-digit by two digit multiplication.

Video tutorials: http://embarc.online Info for parents: http://bit.ly/pusdmath