Chapter 1 Flashcards

Chapter	1 Flashcards	
Card #	Front Side of the card	Back Side of the card
1	Ray	Starts at an endpoint and goes on forever in one direction. Named with endpoint first then one point on the ray
2	Name the ray	
	MAC	\overrightarrow{MA} or \overrightarrow{MC}
3	$m\overline{AB}$ means:	The measure of segment AB.
4	AB means:	The distance between points A and B, also means the measure of the segment AB.
5	m∡DIG	The measure of angle DIG.
6	$\overline{MA} \cong \overline{TH}$	Segment MA is congruent to segment TH. It means they have the same or equal measures. Also $MA = TH$ or $\overline{mMA} = \overline{mTH}$
7	What is the intersection of two lines?	The intersection of two lines is one point.
8	What is the intersection of two planes?	The intersection of two planes is a line.
9	How many points define a plane?	Three non-collinear points will create a plane.
10	What is a midpoint?	A midpoint is a point that divides a segment into two congruent segments (segments that are equal in measure)
11	Ď Ö Ğ	
	Point O is called a	Midpoint or segment bisector
12	What is an angle bisector?	An angle bisector is a ray that divides an angle into 2 congruent angles (angles that have the same measure)
13	If \overrightarrow{AS} bisects $\angle FAT$, what is true?	$\angle 3 \cong \angle 4$ or $m\angle 3 = m\angle 4$
14	Complementary angles are	Complementary angles are two angles that add to 90 degrees
15	Supplementary angles are	Supplementary angles are two angles that add to 180 degrees
16	A linear pair of angles are	A linear pair of angles are angles that are adjacent and supplementary. The non-shared sides form a straight line.
17	What is the relationship between the measures of vertical angles?	Vertical angles are congruent (have the same measure).
18	What is the relationship between the two angles?	$\cancel{\cancel{4}5}\cong\cancel{\cancel{4}6}$ The angles are congruent or equal in measure.

	T	
19	What is the distance formula?	$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$
20	A B C	AB + BC = AC
	If B is between A and C	(Segment Addition Postulate)
	What is true?	
		Two small segments add to equal the big
		segment.
21	What is true about	$m\angle PQR + m\angle RQS = m\angle PQS$
	the angles in the diagram?	(Angle Addition Postulate)
	diagram:	Two areall areales add to asset the big areals
	S	Two small angles add to equal the big angle.
22	×	
	2 3 $\angle 1$ and $\angle 2$ are?	$\angle 1$ and $\angle 2$ are a linear pair and supplementary
	Zi and Zz are:	Zi and Zz are a finear pair and supplementary
23		
	$\frac{2}{3}$ $\angle 1$ and $\angle 3$ are ?	$\angle 1$ and $\angle 3$ are vertical angles and congruent
	4	
24	<u></u>	
	What is the	These two angles form a right angle. Since a
	relationship	right angle measures 90 degrees, these two
	between these	angles are complementary.
	two angles?	
25	What is the Pythagorean theorem?	In a right triangle where c is the side across
25	What is the rythagorean theorem:	from the right angle.
		$a^2 + b^2 = c^2$
26	What is the midpoint formula?	
20	What is the imapoint formula.	$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$
27	Find DE if D(-1, 6) and (5, -2)	$\left(\frac{1}{2} \right)^{2} \left(\frac{2}{2} \right)^{2} \left(\frac{2}{2} \right)^{2}$
		DE = $\sqrt{(5-1)^2 + (-2-6)^2} = \sqrt{6^2 + (-8)^2}$
		$=\sqrt{36+64}=\sqrt{100}=10$
28	Florida to a DE 1507 (1.1)	
	Find the midpoint of DE if D(-1, 6) and (5, -2).	$\left(\frac{-1+5}{2}, \frac{6+-2}{2}\right) = \left(\frac{4}{2}, \frac{4}{2}\right) = (2,2)$
	ana (3, -2).	
29	If A(-3, 2) is the midpoint of \overline{CT} and	$\begin{bmatrix} 2 & -1+x \\ 1 & 2 \end{bmatrix}$
	C has the coordinates of (-1, 7), what	$-3 = \frac{-1+x}{2}$ and $2 = \frac{7+y}{2}$
	is the coordinates of point T?	
		$(2)(-3) = \frac{-1+x}{2}(2) \qquad (2)(2) = \frac{7+y}{2}(2)$
		$-6 = -1 + x \qquad 4 = 7 + y$
		$\begin{array}{c cccc} +1 & +1 & & -7 & -7 \\ -5 = x & & -3 = x \end{array}$
		-5=x $-3=x$
30	What are the sides and vertex of	Vertex is point O
	$\angle NOG$?	Sides are \overrightarrow{ON} and \overrightarrow{OG}
<u></u>		Sides are Off and OO

.