Use the graph at right to explore similarity in the coordinate plane.

2. Multiply each coordinate of each vertex of ΔPQR by 3. Then graph $\Delta P'Q'R'$ with these new vertices. How is $\Delta P'Q'R'$ related to ΔPQR ? $P(O,4) \Rightarrow P'(O,5,4.5)$

 $Q' \rightarrow Q(0.3,0.3)$ 3. Now multiply each coordinate of each vertex of ΔPQR by $\frac{1}{2}$. Then graph $\Delta P"Q"R"$ with these new vertices. How is $\Delta P''Q''R''$ related to ΔPQR ?

$$P''(0,2), Q''(0,0), R''(1,0)$$

$$P'' \rightarrow P(0,\frac{1}{2}, 4, \frac{1}{2}) \qquad R'' \rightarrow (2,\frac{1}{2}, 0,\frac{1}{2})$$

$$Q'' \rightarrow Q(0,\frac{1}{2}, 0,\frac{1}{2})$$

Dilations

A dilation $D_{(n, C)}$ is a transformation that has center of dilation C and scale factor n, where n > 0, with the following properties:

- Point R maps to R' in such a way that R' is on \overrightarrow{CR} and $CR' = n \cdot CR$.
- Each length in the image is n times the corresponding length in the preimage (i.e., $X'R' = n \cdot XR$).

- The image of the center of dilation is the center itself (i.e., C' = C).
- If n > 1, the dilation is an enlargement.
- If 0 < n < 1, the dilation is a reduction.
- Every angle is congruent to its image under the dilation.

On a coordinate plane, the notation D_n describes the dilation with the origin as center of dilation.

Scale Factor -> Ratio of Sides (K)

D(n,c)
La Scale Factor

Korn > 1 Enlargement

Korn OCXCI Reduce

A dilation is a transformation that changes the Size of a figure but not its Shape.

The preimage and image are always similar. A Scale Factor describes how much a figure is enlarged or reduced.

Example 1. Triangle ABC above has vertices A(0,0), B(2,6), and C(6,4). Find the coordinates of the vertices of the image after a dilation with a scale factor $\frac{1}{2}$.

Preimage			<u>Image</u>
ΔABC			$\Delta A'B'C'$
A(0,0)	$\rightarrow (\frac{1}{2} \cdot 0,$	$\frac{1}{2} \cdot 0) \rightarrow$	A'(0,0)
B(2,6)	$\rightarrow (\frac{1}{2} \cdot 2,$	$\frac{1}{2}$ ·6) \rightarrow	B'(1,3)
C(6,4)	$\rightarrow (\frac{1}{2} \cdot 6,$	$\frac{1}{2}$ ·4) \rightarrow	C'(3,2)

Rectangle A'B'C'D' is a dilation with center P of ABCD. How are the side lengths and angle measures of ABCD related to those of A'B'C'D'?

SOLUTION

A(2,0) A'(4,0)
B(2,3) B'(6,9)

$$C(4,3)$$
 $C'(12,9)$
 $D(4,0)$ $D'(12,0)$

2. Rectangle W'X'Y'Z' is a dilation with center P of WXYZ. How are the side lengths and angle measures of the two figures related?

Quadrilateral J'K'L'M' is a dilation of JKLM. What is the scale

factor?

SOLUTION

上ス

$$\frac{12}{17} = \frac{2}{3}$$

a. Is the dilation an enlargement or a reduction?

b. What is the scale factor? $1 = \frac{1}{2}$

Dilate a Figure With Center at the Origin Scale Factor (K) = 3 What are the vertices of $D_3(\triangle ABC)$?

The notation $D_3(\triangle ABC)$ means the image of △ABC after a dilation centered at the origin, with scale factor 3.

SOLUTION

4. Use $\triangle PQR$.

a. What are the vertices of

$$D_{\frac{1}{4}}(\Delta PQR)? |_{\mathcal{K} = \frac{1}{4}}$$

$$P(8,4) \rightarrow P'(8,\frac{1}{4},4,\frac{1}{4}) = (2,1) -$$

b. How are the distances to the origin from each image point related to the distance to the origin from each corresponding preimage point?

What are the vertices of $D_{(\frac{1}{2}, R)}(QRST)$?

SOLUTION

Preimage Point	Change From R(-2,7)		Half of the Change from R(-2,7)		Add to R (-2, 7)	Image Point
	Horiz	Vert	Horiz	Vert	1	10.7 (100m)
Q (-2, -1)	0	-8	0	-4		(-2,3)
S (4, 7)	6	0	3	0		(1,7)
T (4, -1)	6	-8	3	-4		(1,3)

R (-2,7)