

Law of Cosines

For any $\triangle ABC$, the Law of Cosines relates the cosine of each angle to the side lengths of the triangle.

$$\underline{a}^2 = b^2 + c^2 - 2bc \cos \underline{A}$$

$$b^2 = a^2 + c^2 - 2ac \cos B$$

$$c^2 = a^2 + b^2 - 2ab \cos C$$

What is BC to the nearest tenth?

SOLUTION

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$a^2 = 10^2 + 8^2 - 2cio)(8)\cos 57^\circ$$

$$a^2 = 76.8577$$

$$a \approx 8.8$$

a. What is DE?

Enter you
$$f^2 = d^2 + e^2 - 2 de \cos F$$

 $f^2 = 8^2 + c^2 - 2(8)(c) \cos 62^{\circ}$
 $f = 7.4$

b. What is GH?

What is $m \angle X$?

ther your
$$X^2 = y^2 + z^2 - 2yz \cos X$$

$$4^2 = 6^2 + 7^2 - 2(6)(7)\cos X$$

$$16 = 36 + 49 - 84\cos X$$

$$16 = 85 - 84\cos X$$

$$-85 - 85$$

$$-69 = -84\cos X$$

$$-69 = -84\cos X$$

$$\cos X$$

What is $m \angle P$?

$$13^{2} = 8^{2} + 11^{2} - 2r_{2} \cos P$$

$$13^{2} = 8^{2} + 11^{2} - 2(8)(11) \cos P$$

$$169 = 69 + 121 - 176 \cos P$$

$$169 = 185 - 176 \cos P$$

$$-16 = -176 \cos P$$

$$\frac{16}{176} = \cos P$$

$$Q = 11$$

$$R = 13 = P$$

$$Cos^{-1}\left(\frac{14}{174}\right) = m2P$$

$$m2P = 84.8°$$

The optimal tilt for Keenan's solar panel is between 58° and 60° to the horizontal. Has Keenan placed his solar panel at an optimal angle?

SOLUTION

The district ranger wants to build a new ranger station at the location of the fire tower because it would be closer to Bald Mountain than the old station is. Is the district ranger correct? Explain.

SOLUTION X= 1.42+ 2.12-2(1.4)(2.1)cos490

Yes, Fire tower is closen to Bald mountain

Bald Mountain

Ranger Station 2.1 mi

Fire Tower 58 m:

4. Assume a path is drawn from the fire tower to Bald Mountain. What is the angle the new path forms with the old path from Bald Mountain to the ranger station?

12. Use the Law of Cosines to find the diagonal of the parallelogram.

Enter your answer.

Solve the Triangle

$$m \angle A = 34.7 \quad m \angle B = 33.3 \quad C = 59.8$$

 $m \angle C = 110^{\circ}, b = 35 \text{ mi}, \alpha = 38 \text{ mi}$

$$\frac{38}{\sin A} = \frac{59.8}{\sin 10^{\circ}}$$

$$59.85inA = 385in110^{8}$$

 $SinA = \frac{385in110^{8}}{59.8}$
 $Sin^{-1} \left(\frac{385in110}{59.8} \right) = m A$
 $m(A = 36.7)$

$$Sin^{-1}\left(\frac{38\sin 10}{51.8}\right) = m \angle A$$

$$m \angle A = 36.$$

$$m \angle A = |081|$$
 $m \angle B = m \angle C = \frac{A}{20 \text{ ft}}$ $\log A$ \log

During a figure skating routine, Jackie and Peter skate apart with an angle of 15° between them. Jackie skates for 5 meters and Peter skates for 7 meters. How far apart are the skaters? $\times^{2} = S^{2} + 7^{2} - 2 (5)(7) \cos S^{2}$

5 × ×

N - 0 +1 -263 1C1/105/S

X=2.5 m apert

On a map, Orlando is 178 mm due south of Niagara Falls, Denver is 273 mm from Orlando, and Denver is 235 mm from Niagara Falls. Find the angle at Niagara Falls.

A triangular playground has sides of lengths 475 feet, 595 feet, and 401 feet. What are the neasures of the angles between the sides, to the nearest tenth of a degree?