Logarithms Practice Exam

- 1) Write the following in exponential form $\log_9 27 = \frac{3}{2}$
- 2) Write each of the following in logarithmic form $16^{1/4} = 2$

Evaluate each of the following logarithms without the use of a calculator.

3)
$$\log_4 \frac{1}{2} =$$

4)
$$\log_8 4 =$$
 5) $\log_3 81 =$ 6) $\log_4 0 =$

5)
$$\log_3 81 =$$

6)
$$\log_4 0 =$$

Write each of the following as the sum or difference of logarithms.

7)
$$\log \sqrt[4]{(x+1)^3(x-2)^2}$$

8)
$$\log_5 \frac{6x^2}{11y^5z}$$

9)
$$\log_2 \frac{\sqrt[5]{3(x+2)^3}}{x-1}$$

10)
$$\log_3 \frac{\sqrt{5x^5y^3}}{\sqrt[3]{z^2}}$$

Rewrite each of the following logarithmic expressions using a single logarithm.

11)
$$\frac{1}{3}\log 6 + \frac{1}{3}\log x + \frac{2}{3}\log y$$

12)
$$\ln(x+3) - \ln(2x+5) + 2\ln(x-1)$$

13)
$$3\log_4 x - 5\log_4 y + 2\log_4 z$$

14)
$$\log_3(x+2) + \log_3(x-2) - \log_3(x+4)$$

Use the following information, to approximate the logarithm to 4 significant digits by using the properties of logarithms.

$$\log_a 2 \approx 0.3562$$
, $\log_a 3 \approx 0.5646$, and $\log_a 5 \approx 0.8271$

$$\log_a 3 \approx 0.5646$$

$$\log_a 5 \approx 0.8271$$

15)
$$\log_a 18$$

16)
$$\log_a \frac{4}{9}$$

Using a calculator, evaluate each of the following. Round all answers to three decimal places.

20)
$$\log_3 \frac{1}{5}$$

Solve each of the following logarithmic equations. (Round any solutions with decimals to three decimal places) Always check for extraneous roots!!!

22)
$$\log_3(x+5) + \log_3(x+3) = \log_3 35$$

23)
$$2\log_3 x - \log_3 (x-2) = 2$$

24)
$$\log_2(x+3) + \log_2(x-3) = 4$$

25)
$$2-6 \ln x = 10$$

Solve each of the following exponential equations. Round solutions to three decimal places.

26)
$$12^{3x+1} = 7^2$$

27)
$$12^{3x-2} = 8^{5x+1}$$

26)
$$12^{3x+1} = 7^2$$
 27) $12^{3x-2} = 8^{5x+1}$ **28)** $2 - 4e^{2x-1} = 12$

Answer each of the following.

- 29) If you invest \$5000 in an account that pays 12% interest, compounded quarterly, how much would you have at the end of 15 years?
- 30) How much would you have to invest in an account that pays 5% interest, compounded continuously, to have a balance of \$30,000 at the end of 15 years?
- 31) How long will it take for an investment of \$2,000 in an account that pays $4\frac{1}{2}\%$ interest compounded quarterly to become \$12,000.